Magnetic Triethylene-tetramine Graphene oxide (M-T-GO) was firstly synthesized by constant temperature stirring and hydrothermal methods in this work, and characterized by Scanning electron microscope (SEM) and X-ray photoelectron spectrum (XPS). Adsorption capacity of ionic dyes on M-T-GO under different pH, adsorption time and initial concentration were investigated. At the same time adsorption kinetics and adsorption isotherm were fitted respectively. Pseudo-second-order model and Langmuir model fitted the adsorption of ionic dyes on M-T-GO. The adsorption property of M-T-GO for TY and MB was outstanding and the saturated adsorption capacities were 157.23mg/g and 169.49mg/g, respectively. Compared with GO, M-T-GO could remove ionic dyes more effectively. Moreover, M-T-GO made separation easy in the foreign magnetic field and possessed good performance of regeneration.
Shen Y, Fang Q, Chen B. Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection [J]. Environmental Science Technology, 2015,49(1):67-84.
[8]
Fan L. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue [J]. Journal of Hazardous Materials, 2012,216(10):272-279.
Ma H L, Zhang Y, Hu Q H. Chemical reduction and removal of Cr(VI) from acidic aqueous solution by ethylenediamine-reduced graphene oxide [J]. J. Mater. Chem., 2012,22(13):5914-5916.
Ying W, Xu L, Wang H, et al. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions [J]. Journal of Colloid & Interface Science, 2014,416(3):243-251.
[15]
Li L, Fan L, Sun M, et al. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin- chitosan [J]. Colloids & Surfaces B Biointerfaces, 2013,107(7): 76-83.
[16]
Guo X, Du B, Qin W, et al. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water.[J]. Journal of Hazardous Materials, 2014, 278:211-220.
[17]
Li Y, Du Q, Liu T, et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes [J]. Chemical Engineering Research & Design, 2013, 91(2):361-368.
[18]
Zhou L, Pan S, Chen X, et al. Kinetics and thermodynamics studies of pentachlorophenol adsorption on covalently functionalized Fe3O4@SiO2-MWCNTs core-shell magnetic microspheres [J]. Chemical Engineering Journal, 2014,257(6): 10-19.
[19]
Travlou N A, Kyzas G Z, Lazaridis N K, et al. Functionalization of graphite oxide with magnetic chitosan for the preparation of dye adsorbent [J]. Langmuir, 2013,29(5):1657-1668.
[20]
Cunningham G E. A New Interpretation of the Adsorption Isotherm [J]. J. Phys. Chem., 1934,39(1):69-77.