The comparison of diurnal variation of nanoparticle spectra in sunny and fog-haze days during winter in Nanjing
ZHANG Lu-yao1, NIU Sheng-jie1,2, WANG Tian-shu1, WANG Yuan1, LÜ Jing-jing1
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
Based on observing data of aerosol number concentration and meteorological parameters in December 2017 in Nanjing, the diurnal variations and differences of 10~1000nm nanometer aerosol spectra were compared and studied in sunny and fog-haze days. The results showed that there was a significant relationship between the occurrence of unimodal distribution and pollution aggravation, which occurred in the sunny afternoon, haze serious pollution and pollution dissipation stage, and dense fog process, respectively. The peak particle sizes were sunny days (20~100nm), haze days (27~144nm) and foggy days (34~122nm). Under three weather conditions, strong solar radiation and low humidity in sunny days were suitable for the generation of small particles, and the proportion of nuclei mode was the highest in sunny days. The meteorological field in haze days was suitable for the stable existence of a large number of particles, and the proportion of Aitken mode was highest in haze days. A large amount of aerosols had hygroscopic growth in foggy days, resulting the proportion of accumulation mode was highest in foggy days. During the pollutant accumulation phase in haze days, the collision and growth effect of a large number of accumulated particles on nuclei and Aitken particles inhibits the generation of nuclei and Aitken particles. The variation rate of nuclei and Aitken mode particles concentration was -91.0% and -62.5%, while that of the accumulation mode particles was 89.7%. Fog removal was most effective on Aitken particles.
张璐瑶, 牛生杰, 王天舒, 王元, 吕晶晶. 南京冬季晴天及雾-霾天气纳米气溶胶粒子谱日变化比较[J]. 中国环境科学, 2019, 39(7): 2699-2709.
ZHANG Lu-yao, NIU Sheng-jie, WANG Tian-shu, WANG Yuan, LÜ Jing-jing. The comparison of diurnal variation of nanoparticle spectra in sunny and fog-haze days during winter in Nanjing. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(7): 2699-2709.
Temesi D, Molnár A, Mészáros E, et al. Seasonal and diurnal variation in the size distribution of fine carbonaceous particles over rural Hungary[J]. Atmospheric Environment, 2003,37(1):139-146.
[2]
段菁春,李兴华,郝吉明.北京市冬季大气细粒子数浓度的粒径分布特征[J]. 中国环境监测, 2008,24(2):54-59. Duan J C, Li X H, Hao J M. Particle size distribution characteristics of atmospheric fine particle number concentration in winter in Beijing[J]. Environmental Monitoring of China, 2008,24(2):54-59.
[3]
Buzorius G, Hämeri K, Pekkanen J, et al. Spatial variation of aerosol number concentration in Helsinki city[J]. Atmospheric Environment, 1999,33(4):553-565.
[4]
Peters A, Wichmann H E, Tuch T, et al. Respiratory effects are associated with the number of ultrafine particles[J]. American Journal of Respiratory and Critical Care Medicine, 1997,155(4):1376-1383.
[5]
杨军,牛忠清,石春娥,等.南京冬季雾霾过程中气溶胶粒子的微物理特征[J]. 环境科学, 2010,31(7):1425-1431. Yang J, Niu Z Q, Shi C E, et al. Microphysical characteristics of aerosol particles during winter haze in Nanjing[J]. Environmental Science, 2010,31(7):1425-1431.
[6]
胡敏.北京大气细粒子和超细粒子理化特征、来源及形成机制[M]. 北京:科学出版社, 2009:12. Hu M. The physical and chemical characteristics, sources and formation mechanism of fine particles and ultrafine particles in Beijing atmosphere[M]. Beijing:Science Press, 2009:12.
[7]
Cheng Y F, Wiedensohler A, Eichler H, et al. Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China:An observation based numerical study[J]. Atmospheric Environment, 2008,42(25):6373-6397.
[8]
Tan H, Yin Y, Gu X, et al. An observational study of the hygroscopic properties of aerosols over the Pearl River Delta region[J]. Atmospheric Environment, 2013,77:817-826.
[9]
Steinfeld J I. Atmospheric chemistry and physics:From air pollution to climate change[M]. Wiley, 1986:27.
[10]
郭丽君,郭学良,方春刚,等.华北一次持续性重度雾霾天气的产生、演变与转化特征观测分析[J]. 中国科学:地球科学, 2015,(4):427-443. Guo L J, Guo X L, Fang C G, et al. Observation and analysis of the characteristics of the generation, evolution and transformation of a continuous heavy haze weather in north China[J]. Science China Earth Sciences, 2015,(4):427-443.
[11]
Stolaki S, Haeffelin M, Lac C, et al. Influence of aerosols on the life cycle of a radiation fog event. A numerical and observational study[J]. Atmospheric Research, 2015,151:146-161.
[12]
郎凤玲,闫伟奇,张泉,等.北京大气颗粒物数浓度粒径分布特征及与气象条件的相关性[J]. 中国环境科学, 2013,33(7):1153-1159. Lang F L, Yan W Q, Zhang Q, et al. Characteristics of particle size distribution and its correlation with meteorological conditions in Beijing[J]. China Environmental Science, 2013,33(7):1153-1159.
[13]
翟晴飞,金莲姬,林振毅,等.石家庄春季大气气溶胶数浓度和谱的观测特征[J]. 中国环境科学, 2011,31(6):886-891. Zhai Q F, Jin L J, Lin Z Y, et al. Observation of the number concentration and spectrum of atmospheric aerosols in Shijiazhuang in spring[J]. China Environmental Science, 2011,31(6):886-891.
[14]
王琳琳,王淑兰,王新锋,等.北京市2009年8月大气颗粒物污染特征[J]. 中国环境科学, 2011,31(4):553-560. Wang L L, Wang S L, Wang X F, et al. Characteristics of atmospheric particulate pollution in Beijing in August 2009.[J]. China Environmental Science, 2011,31(4):553-560.
[15]
王飞,朱彬,康汉清,等.APS-SMPS-WPS对南京夏季气溶胶数浓度的对比观测[J]. 中国环境科学, 2011,31(9):1416-1423. Wang F, Zhu B, Kang H Q, et al. APS-SMPS-WPS comparison of aerosol concentration in Nanjing in summer[J]. China Environmental Science, 2011,31(9):1416-1423.
[16]
王静,牛生杰,许丹,等.南京一次典型雾霾天气气溶胶光学特性[J]. 中国环境科学, 2013,33(2):201-208. Wang J, Niu S J, Xu D, et al. Aerosol optical properties in a typical haze weather in Nanjing[J]. China Environmental Science, 2013,33(2):201-208.
[17]
黄祖照,王杰,刘建国,等.广州城区大气细颗粒物粒谱分布特征分析[J]. 中国环境科学, 2012,32(7):1177-1181. Huang Z Z, Wang J, Liu J G, et al. Analysis on the distribution characteristics of fine particulate matter in Guangzhou urban area[J]. China Environmental Science, 2012,32(7):1177-1181.
[18]
花艳,潘良宝,汤莉莉,等.南京霾天颗粒物数浓度特征及其受气象条件影响分析[J]. 气象科学, 2017,37(3):385-393. Hua Y, Pan L B, Tang L L, et al. Analysis on the characteristics of the number concentration of particulate matter in haze days in Nanjing and its influence by meteorological conditions[J]. Journal of the Meteorological Sciences, 2017,37(3):385-393.
[19]
吴兑,邓雪娇,毕雪岩,等.细粒子污染形成灰霾天气导致广州地区能见度下降[J]. 热带气象学报, 2007,23(1):1-6. Wu D, Deng X J, Bi X Y, et al. Fine particle pollution caused by haze weather led to reduced visibility in Guangzhou[J]. Journal of Tropical Meteorology, 2007,23(1):1-6.
[20]
尚倩,李子华,杨军,等.南京冬季大气气溶胶粒子谱分布及其对能见度的影响[J]. 环境科学, 2011,32(9):2750-2760. Shang Q, Li Z H, Yang J, et al. Atmospheric aerosol particle distribution and its effect on visibility in winter in Nanjing[J]. Environmental Science, 2011,32(9):2750-2760.
[21]
王元,牛生杰,吕晶晶,等.南京冬季一次强浓雾及超细粒子累积过程分析[J]. 中国环境科学, 2019,39(2):459-468. Wang Y, Niu S J, Lv J J, et al. Analysis of a cumulative event of nano-scale aerosols and a strong fog during winter in Nanjing. China Environmental Science, 2019,39(2):459-468.
[22]
Hussein T, Hämeri K, Aalto P, et al. Particle size characterization and the indoor-to-outdoor relationship of atmospheric aerosols in Helsinki[J]. Scandinavian Journal of Work Environment & Health, 2004, 30(suppl 2):54-62.
[23]
杨军.云降水物理学[M]. 北京:气象出版社, 2011:90-91. Yang J. Cloud precipitation physics[M]. Beijing:China Meteorological Press, 2011:90-91.
[24]
王振会.大气探测学[M]. 北京:气象出版社, 2011:57. Wang Z H. Atmospheric sounding[M]. Beijing:China Meteorological Press, 2011:57.
[25]
Hussein T, Puustinen A, Aalto P P. Aalto, et al. Urban aerosol number size distributions[J]. Atmospheric Chemistry and Physics, 2004,4:391-411.
[26]
Cuhadaroglu B, Demirci E. Influence of some meteorological factors on air pollution in Trabzon city[J]. Energy & Buildings, 1997,25(3):179-184.
[27]
康汉青,朱彬,樊曙先.南京北郊冬季大气气溶胶及其湿清除特征研究[J]. 气候与环境研究, 2009,14(5):523-530. Kang H Q, Zhu B, Fan S X. Study on the characteristics of atmospheric aerosol and its wet removal in winter in northern suburb of Nanjing[J]. Climatic and Environmental Research, 2009,14(5):523-530.
[28]
Zhang Renjian, Wang Mingxing, Fu Jianzhong. Preliminary research on the size distribution of aerosols in Beijing[J]. Advances in Atmospheric Sciences, 2001,(2):225-230.
[29]
王飞,朱彬,康汉清,等. APS-SMPS-WPS对南京夏季气溶胶数浓度的对比观测[J]. 中国环境科学, 2011,31(9):1416-1423. Wang F, Zhu B, Kang H Q, et al. APS-SMPS-WPS comparison of aerosol concentration in Nanjing in summer[J]. China Environmental Science, 2011,31(9):1416-1423.
[30]
Shi J P, Evans D E, Khan A A, et al. Sources and concentration of nanoparticles[J]. Atmospheric Environment, 2001,35(7):1193-1202.
[31]
Ristovski Z D, Morawska L, Bofinger N D, et al. Submicrometer and Supermicrometer Particulate Emission From Spark Ignition Vehicles[J]. Environmental Science & Technology, 1998,32(24):3845-3852.
[32]
范烨,郭学良,付丹红,等.北京及周边地区2004年8、9月间大气气溶胶分布特征观测分析[J]. 气候与环境研究, 2007,12(1):49-62. Fan Y, Guo X L, Fu D H, et al. Observation and analysis of aerosol distribution in Beijing and surrounding areas in August and September 2004[J]. Climatic and Environmental Research, 2007, 12(1):49-62.
[33]
马佳,于兴娜,安俊琳,等.南京北郊冬春季大气能见度影响因子贡献研究[J]. 环境科学, 2016,37(1):41-50. Ma J, Yu X, An J L, et al. Contribution of atmospheric visibility factors in winter and spring in northern suburbs of Nanjing[J]. Environmental Science, 2016,37(1):41-50.
[34]
吴志军,胡敏,岳玎利,等.重污染和新粒子生成过程中城市大气颗粒物数谱分布演变过程[J]. 中国科学:地球科学, 2011,8:1192-1199. Wu Z J, Hu M, Yue D L, et al. The evolution of the number spectrum distribution of urban atmospheric particulate matter in the process of heavy pollution and new particle formation[J]. Science China Earth Sciences, 2011,8:1192-1199.
[35]
Xuemei Wang, Jianmin Chen, Tiantao Cheng, et al. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai[J]. Journal of Environmental Sciences, 2014,26(9):1894-1902.
[36]
杨素英,余欣洋,赵秀勇,等.太原冬季PM2.5影响霾污染的关键尺度谱特征[J]. 环境科学, 2018,6:2512-2520. Yang S Y, Yu X Y, Zhao X Y, et al. Key spectral characteristics of PM2.5 affecting haze pollution in Taiyuan in winter[J]. Environmental Science, 2018,(6):2512-2520.
[37]
黄怡民,刘子锐,陈宏,等.北京夏冬季霾天气下气溶胶水溶性离子粒径分布特征[J]. 环境科学, 2013,34(4):1236-1244. Huang,Y M Liu Z R, Chen H, et al. Particle size distribution characteristics of aerosol water-soluble ions in summer and winter haze weather in Beijing[J]. Environmental Science, 2013,34(4):1236-1244.
[38]
于华英,牛生杰,刘鹏,等.2007年12月南京六次雨雾过程宏、微观结构演变特征[J]. 大气科学, 2015,39(1):47-58. Yu H Y, Niu S J, Liu P, et al. Macrostructure and microstructure evolution of six rain-fog processes in Nanjing in December 2007[J]. Chinese Journal of Atmospheric Sciences, 2015,39(1):47-58.
[39]
Birmili W, Wiedensohler A. New particle formation in the continental boundary layer:Meteorological and gas phase parameter influence[J]. Geophysical Research Letters, 2000,27(20):3325-3328.
[40]
林俊,刘卫,李燕,等.大气气溶胶粒径分布特征与气象条件的相关性分析[J]. 气象与环境学报, 2009,25(1):1-5. Lin J, Liu W, Li Y, et al. Correlation analysis of atmospheric aerosol particle size distribution characteristics and meteorological conditions[J]. Journal of Meteorology and Environment, 2009,25(1):1-5.
[41]
钱凌,银燕,童尧青,等.南京北郊大气细颗粒物的粒径分布特征[J]. 中国环境科学, 2008,28(1):18-22. Qian L, Yin Y, Tong Y Q, et al. The size distribution of fine particulate matter in the northern suburbs of Nanjing[J]. China Environmental Science, 2008,28(1):18-22.