Assessments of the differences of atmospheric environmental capacity between strong and weak Asian monsoon years in Mengzi
YANG Qing-jian1, ZHAO Tian-liang1, ZHENG Xiao-bo2, SHI Jian-wu3, ZHANG Chao-neng3, CHANG Jia-cheng1, ZHANG Kai1, ZHONG Yao-qian3, YU Chao1
1. Joint International Research Laboratory of Climate and Environment Change, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Guizhou Institute of Mountainous Environment and Climate, Guiyang 550002, China;
3. Faculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
Atmospheric environmental capacity is an important index to support air quality management and the total quantity control of air pollutant emissions. The air quality model WRF-Chem was used to simulate and estimate the atmospheric environmental capacity under the background of Asian monsoon climate change in Mengzi over the Yunnan Plateau. 2005 and 2015 respectively was chosen as the strong and weak monsoon years according to the normalized South-Asian Monsoon Index. Concentrations of major atmospheric pollutants at all seasons (represented by January, April, July and October respectively) of 2015 and summer (represented by July) of 2005 were simulated, the atmospheric environmental capacities of CO, NO2, SO2, PM2.5 and PM10 in Mengzi were estimated with 120.31、1.127、1.875、1.267、1.688(×104t/a), respectively. The atmospheric environmental capacity of major air pollutants in winter was the smallest; and in spring was the largest excepting PM10, and the PM2.5 emissions in winter reached saturation. Compared with the 2015 summer with weak monsoon, the atmospheric environmental capacities of CO, NO2, SO2, PM2.5 and PM10 increased respectively by 4.81%, 3.86%, 12.6%, 18.4% and 8.7% in 2005 summer with strong monsoon, and the PM2.5 increased most. The interannual variation of the Asian monsoon plays an important role in regulating the air quality and atmospheric environmental capacity of the Yunnan plateau.
杨清健, 赵天良, 郑小波, 史建武, 张朝能, 常嘉成, 张凯, 钟曜谦, 于超. 亚洲季风强弱年蒙自市大气环境容量差异估算[J]. 中国环境科学, 2019, 39(10): 4054-4064.
YANG Qing-jian, ZHAO Tian-liang, ZHENG Xiao-bo, SHI Jian-wu, ZHANG Chao-neng, CHANG Jia-cheng, ZHANG Kai, ZHONG Yao-qian, YU Chao. Assessments of the differences of atmospheric environmental capacity between strong and weak Asian monsoon years in Mengzi. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(10): 4054-4064.
杨乐心.云贵高原区域大气环境及气候资源时空特征分析[D]. 南京:南京信息工程大学, 2015. Yang L X. Tempor-spatial characterization of atmospheric environment and climatic resources over the Yunnan-Guizhou Plateau[D]. Nanjing:Nanjing University of Information Science & Technology, 2015.
[2]
郑小波,王学锋,罗宇翔,等.云贵高原1961~2006年大气能见度和消光因素变化趋势及原因[J]. 生态环境学报, 2010,19(2):314-319. Zheng X B, Wang X F, Luo Y X, et al. Long-term trends in visibility and atmospheric extinction coefficient over Yunnan-Guizhou Plateau in southwest China for 1961~2006[J]. Ecology and Environmental Sciences, 2010,19(2):314-319.
[3]
Zheng X B, Kang W M, Zhao T L, et al. Long-term trends in sunshine duration over Yunnan-Guizhou Plateau in Southwest China for 1961~2005[J]. Geophysics Research Letter, 2008,35,L15707,doi:10.1029/2008GL034482.
[4]
郑小波,王学锋,罗宇翔,等.1961~2005年云贵高原太阳辐射变化特征及其影响因子[J]. 气候与环境研究, 2011,16(5):657-664. Zheng X B, Wang X F, Luo Y X, et al. Variation characteristics of global radiation and the associated climatic factors over Yunnan-Guizhou Plateau in the southwestern part of China for 1961~2005[J]. Climatic and Environmental Research, 2011,16(5):657-664.
[5]
晏红明,杞明辉,肖子牛.云南5月雨量与热带海温异常及亚洲季风变化的关系[J]. 应用气象学报, 2001,12(3):368-376. Yan H M, Qi M H, Xiao Z N. Relationship between precipitation in May over Yunnan and the changes of tropical sea surface temperature and Asia monsoon[J]. Quarterly Journal of applied meteorology, 2001, 12(3):368-376.
[6]
胡毅,李萍,杨建功,等.应用气象学[M]. 北京:气象出版社, 2007. Hu Y, Li P, Yang J G, et al. Applied meteorology[M]. Beijing:China Meteorological Press, 2017.
[7]
郝吉明,许嘉钰,吴剑,等.我国京津冀和西北五省(自治区)大气环境容量研究[J]. 中国工程科学, 2017,19(4):13-19. Hao J M, Xu J Y, Wu J, et al. A Study of the atmospheric environmental capacity of Jingjinji and of the five northwestern provinces and autonomous regions in China[J]. Engineering Sciences, 2017,19(4):13-19.
[8]
王涵瑾,王源程,倪长健.基于修正A值法核算成都市季节大气环境容量[J]. 环境与可持续发展, 2015,40(3):71-74. Wang H J, Wang Y C, Ni C J. Calculating the seasonal atmospheric environmental capacity in Chengdu based on modified A value method[J]. Environment and Sustainable Development, 2015,40(3):71-74.
[9]
肖杨,毛显强,马根慧,等.基于ADMS和线性规划的区域大气环境容量测算[J]. 环境科学研究, 2008,21(3):13-16. Xiao Y, Mao X Q, Ma G H, et al. Atmospheric environmental capacity study based on ADMS Model and linear programming[J]. Research of Environmental Sciences, 2008,21(3):13-16.
[10]
李海晶.大气环境容量估算及总量控制方法的研究进展[J]. 四川环境, 2007,(1):67-71. Li H J. Research progress on the methods of the atmospheric environmental capacity calculation and total quantity control[J]. Sichuan Environment, 2007,(1):67-71.
[11]
薛文博,付飞,王金南,等.基于全国城市PM2.5达标约束的大气环境容量模拟[J]. 中国环境科学, 2014,34(10):2490-2496. Xue W B, Fu F, Wang J N, et al. Modeling study on atmospheric environmental capacity of major pollutants constrained by PM2.5 compliance of Chinese cities[J]. China Environmental Science, 2014, 34(10):2490-2496.
[12]
钱跃东,王勤耕.针对大尺度区域的大气环境容量综合估算方法[J]. 中国环境科学, 2011,31(3):504-509. Qian Y D, Wang Q G. An integrated method of atmospheric environmental capacity estimation for large-scale region[J]. China Environmental Science, 2011,31(3):504-509.
[13]
Grell G A, Schmitz P R, Mckeen S A, et al. Fully coupled ‘online’ chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39(37):6957-6975.
[14]
常嘉成,赵天良,谭成好,等.基于WRF-Chem模拟的玉溪市大气环境容量精细估算[J]. 环境科学学报, 2017,37(10):3876-3884. Chang J C, Zhao T L, Tan C H, et al. An elaborative assessment of atmospheric environmental capacity in Yuxi based on WRF-Chem modeling[J]. Acta Scientiae Circumstantiae, 2017,37(10):3876-3884.
[15]
周广强,谢英,吴剑斌,等.基于WRF-Chem模式的华东区域PM2.5预报及偏差原因[J]. 中国环境科学, 2016,36(8):2251-2259. Zhou G Q, Xie Y, Wu J B, et al. WRF-Chem based PM2.5 forecast and bias analysis over the East China Region[J]. China Environment Science, 2016,36(8):2251-2259.
[16]
Tie X, Geng F, Peng L, et al. Measurement and modeling of O3 variability in Shanghai, China:Application of the WRF-Chem model[J]. Atmospheric Environment, 2009,43(28):4289-4302.
[17]
GB 3095-2012环境空气质量标准[S]. GB 3095-2012 Ambient air quality standard[S].
[18]
Li M, Zhang Q, Kurokawa J I, et al. MIX:a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP[J]. Atmospheric Chemistry and Physics, 2017,17(2):935-963.
[19]
Theobald M R, David S, Massimo V. Improving the spatial resolution of air-quality modelling at a European scale-development and evaluation of the Air Quality Re-gridder Model (AQR v1.1)[J]. Geoscientific Model Development, 2016,9(12):4475-4489.
[20]
Zheng B, Zhang Q, Zhang Y, et al. Heterogeneous chemistry:a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China[J]. Atmospheric Chemistry and Physics, 2015,15(4):2031-2049.
[21]
陈皖滇.蒙自市环境空气质量变化特征[J]. 环境科学导刊, 2016, 35(S1):82-86. Chen W D. Changing characteristics of air quality in Mengzi City[J]. Environmental Science Survey, 2016,35(S1):82-86.
[22]
Li J P, Zeng Q C. A new monsoon index and the geographical distribution of the global monsoons[J]. Advances in Atmospheric Sciences, 2003,20(2):299-302.
[23]
程叙耕,何金海,车慧正,等.1980~2010年中国区域地面风速对能见度影响的地理分布特征[J]. 中国沙漠, 2013,33(6):1832-1839. Cheng X G, He J H, Che H Z, et al. Impact of surface wind speed on atmospheric visibility and its geographic pattern over China in 1980~2010[J]. Journal of Desert Research, 2013,33(6):1832-1839.
[24]
李莉,程水源,陈东升,等.基于CMAQ的大气环境容量计算方法及控制策略[J]. 环境科学与技术, 2010,33(8):162-166. Li L, Cheng S Y, Chen D S, et al. A Calculated methodology of atmospheric environmental capacity based on CMAQ and control strategy[J]. Environmental Science & Technology, 2010,33(8):162-166