Evolution of anaerobic granular sludge (AGS) under high H2 partial pressure
XU Heng1,2, XIA Yu1, WANG Jian-Bing1, HE Xu-Wen1, WANG Kai-Jun2
1. School of Chemical and Environmental Engineering, China University of Mining & Technology(Beijing), Beijing 100083, China; 2. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
Abstract:To investigate the feasibility of in-situ/biological biogas upgrading (IBBU) in anaerobic wastewater treatment (AnWT) using anaerobic granular sludge (AGS), the evolution of AGS under high H2 partial pressure and shear force was monitored with increasing influent COD load in the anaerobic sequencing batch reactor (ASBR), in terms of reactor performance and characteristics of AGS. The results showed that smaller but intact AGS was formed and exhibited high-rate performance when the influent COD load was below 5g/(L·d). Propionate degradation via H2 interspecies transfer (HIT) mechanism was possibly enhanced in AGS. However, when the influent COD load was further increased over 6g/(L·d), uncontrollable propionate accumulation was observed. Therefore, it's necessary to find other techniques to reduce propionate accumulation under higher influent COD load in the future.
Angelidaki I, Treu L, Tsapekos P, et al. Biogas upgrading and utilization:Current status and perspectives[J]. Biotechnology Advances, 2018.36(2):452-466.
[2]
Treu L, Kougias P G, de Diego-Díaz B, et al. Two-year microbial adaptation during hydrogen-mediated biogas upgrading process in a serial reactor configuration[J]. Bioresource Technology, 2018,264:140-147.
[3]
Luo G, AngelidakI I. Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2:Process performance and microbial insights[J]. Applied Microbiology and Biotechnology, 2013,97(3):1373-1381.
[4]
王凯军.厌氧生物技术-理论与应用[M]. 北京:化学工业出版社, 2014. Wang K. Anaerobic biotechnology-theory and application[M]. Beijing:Chemical Industry Press, 2014.
[5]
Cui F, Kim M. Use of steady-state biofilm model to characterize aerobic granular sludge[J]. Environmental Science & Technology, 2013,47(21):12291-12296.
[6]
孙寓姣,左剑恶,李建平,等.厌氧颗粒污泥中微生物种群变化的分子生物学解析[J]. 中国环境科学, 2006,26(2):183-187. Sun Y, Zuo J, Li J, et al. Analysis of microorganism population in anaerobic granule with molecular bio-techniques[J]. China Environmental Science, 2006,26(2):183-187.
[7]
徐恒,汪翠萍,颜锟,等.颗粒型厌氧生物膜改善高氢分压下丙酸降解抑制研究[J]. 中国环境科学, 2016,36(5):1435-1441. Xu H, Wang C, Yan K, et al. Granule-based anaerobic biofilm enhances propionic acid degradation under high H2 partial pressure[J]. China Environmental Science, 2016,36(5):1435-1441.
[8]
Karadag D, Koroğlu O E, Ozkaya B, et al. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater[J]. Process Biochemistry, 2015,50(2):262-271.
[9]
Morgenroth E, Sherden T, Van Loosdrecht M C M, et al. Aerobic granular sludge in a sequencing batch reactor[J]. Water Research, 1997,31(12):3191-3194.
[10]
EiroA M, Kennes C, Veiga M C. Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor[J]. Water Research, 2004,38(16):3495-3502.
[11]
Fang H H P, Liu H, Zhang T. Characterization of a hydrogen-producing granular sludge[J]. Biotechnology and Bioengineering, 2002,78(1):44-52.
[12]
Bassani I, Kougias P G, Angelidaki I. In-situ biogas upgrading in thermophilic granular UASB reactor:key factors affecting the hydrogen mass transfer rate[J]. Bioresource Technology, 2016,221:485-491.
[13]
Xu H, Gong S, Sun Y, et al. High-rate hydrogenotrophic methanogenesis for biogas upgrading:the role of anaerobic granules[J]. Environmental Technology, 2014,36(4):529-537.
[14]
Lovley D R, Phillips E J. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988,54(6):1472-1480.
[15]
国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版)[M]. 北京:中国环境科学出版社, 2002. State Environmental Protection Administration of China (SEPA), Editorial Committee of "Monitoring and Analytical Methods of Water and Wastewater", Monitoring and Analytical Methods of Water and Wastewater, 4th ed.[M]. Beijing:China Environmental Science Press, 2002.
[16]
Anderson G K, Yang G. Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration[J]. Water Environment Research, 1992,64(1):53-59.
[17]
Jenkins S R, Morgan J M, Sawyer C L. Measuring anaerobic sludge digestion and growth by a simple alkalimetric titration[J]. Journal (Water Pollution Control Federation), 1983,55(5):448-453.
[18]
Laguna A, Ouattara A, Gonzalez R O, et al. A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge[J]. Water Science and Technology, 1999,40(8):1-8.
[19]
Altschul S F, Madden T L, Sch ffer A A, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Research, 1997,25(17):3389-3402.
[20]
Lee Y J, Romanek C S, Wiegel J. Clostridium aciditolerans sp. nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2007,57(2):311-315.
[21]
Goberna M, Insam H, FrankE-Whittle I H. Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor[J]. Applied and Environmental Microbiology, 2009, 75(8):2566-2572.
[22]
Wang J, Wan W. Factors influencing fermentative hydrogen production:A review[J]. International Journal of Hydrogen Energy, 2009,34(2):799-811.
[23]
Müller N, Worm P, Schink B, et al. Syntrophic butyrate and propionate oxidation processes:from genomes to reaction mechanisms[J]. Environmental Microbiology Reports, 2010,2(4):489-499.
[24]
Albertsen M, Hugenholtz P, Skarshewski A, et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes[J]. Nature Biotechnology, 2013,31(6):533-538.
[25]
Honda T, Fujita T, Tonouchi A. Aminivibrio pyruvatiphilus gen. nov., sp. nov., an anaerobic, amino-acid-degrading bacterium from soil of a Japanese rice field[J]. International Journal of Systematic and Evolutionary Microbiology, 2013,63(10):3679-3686.
[26]
Fournier G P, Gogarten J P. Evolution of acetoclastic methanogenesis in methanosarcina via horizontal gene transfer from cellulolytic clostridia[J]. Journal of Bacteriology, 2008,190(3):1124-1127.
[27]
Van Eerten-Jansen M C A A, Veldhoen A B, Plugge C M, et al. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system[J]. Archaea, 2013:1-12.
[28]
Morita M, Malvankar N S, Franks A E, et al. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates[J]. Mbio, 2011,2(4):e00159-11.
[29]
Yamada C, Kato S, Ueno Y, et al. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate[J]. Journal of Bioscience and Bioengineering, 2015,119(6):678-682.
[30]
Shrestha P M, Malvankar N S, Werner J J, et al. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment[J]. Bioresource Technology, 2014,174:306-310.
[31]
RegueirO L, Veiga P, Figueroa M, et al. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters[J]. Microbiological Research, 2012,167(10):581-589.