The Regional Atmospheric Environment Modeling System (RegAEMS) was used to simulate a severe PM2.5 pollution event from December 26, 2017 to January 2, 2018 at "2+26 cities" in the Beijing-Tianjin-Hebei region and its surrounding areas. Based on RegAEMS, a module named Air Pollution Source Apportionment (APSA) for pollutant source apportionment was developed to analyse the regional and industrial sources of PM2.5 in "2+26" cities. This pollution event was characterized by long duration, broad influence and serious pollution, with the hourly maximum PM2.5 concentration reaching 201~507μg/m3. The results showed that RegAEMS could well simulate the temporal and spatial distributions of PM2.5 during this period of heavy pollution. The regional source contribution showed that the peripheral areas generally had a greater impact on the border cities, contributing around 15.3% to 57.5%, and had a less impact on the central cities with the contribution lingering around 0.3% to 8.4%. The source contributions of PM2.5 were greatly affected by near-surface wind field, and showed obvious regional transmission characteristics. Residential, industrial and transportation sources contributed significantly in these 28 cities, with contribution percentages ranging from 26.6% to 45.8%, 16.4% to 37.8% and 13.0% to 35.9%, respectively. This study showed that RegAEMS could be used to perform the analysis of the regional and industrial sources of fine particulate matters in cities and had great application potentials in the scientific management and control of atmospheric pollution.
王德羿, 王体健, 韩军彩, 谢晓栋, 陈楚, 曹云擎, 束蕾. “2+26”城市大气重污染下PM2.5来源解析[J]. 中国环境科学, 2020, 40(1): 92-99.
WANG De-yi, WANG Ti-jian, HAN Jun-cai, XIE Xiao-dong, CHEN Chu, CAO Yun-qing, SHU Lei. Source apportionment of PM2.5 under heavy air pollution conditions in “2+26” cities. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(1): 92-99.
曹军骥.我国PM2.5污染现状与控制对策[J]. 地球环境学报, 2012,3(5):1030-1036. Cao J J. Pollution status and control strategies of PM2.5 in China[J]. Journal of Earth Environment, 2012,3(5):1030-1036.
[2]
曹国良,张小曳,龚山陵,等.中国区域主要颗粒物及污染气体的排放源清单[J]. 科学通报, 2011,56(3):261-268. Cao G L, Zhang X Y, Gong S L, et al. Emission inventories of primary particles and pollutant gases for China[J]. Chinese Science Bulletin, 2011,56(3):261-268.
[3]
吴雪伟,陈卫卫,王堃,等.长春市餐饮源PM2.5和VOCS排放清单[J]. 中国环境科学, 2018,38(8):2882-2889. Wu X W, Chen W W, Wang K, et al. PM2.5 and VOCS emission inventories from cooking in Changchun City[J]. China Environmental Science, 2018,38(8):2882-2889.
[4]
张延君,郑玫,蔡靖,等.PM2.5源解析方法的比较与评述[J]. 科学通报, 2015,60(2):109-121. Zhang Y J, Zheng M, Cai J, et al. Comparison and overview of PM2.5 source apportionment methods[J]. Chinese Science Bulletin, 2015, 60(2):109-121.
[5]
Watson J G, Antony Chen L W, Chow J C, et al. Source apportionment:findings from the U.S. supersites program[J]. Journal of the Air & Waste Management Association, 2008,58(2):265-288.
[6]
孙天乐,邹北冰,黄晓锋,等.深圳市大气PM2.5来源解析[J]. 中国环境科学, 2019,39(1):15-22. Sun T L, Zou B B, Huang X F, et al. Source apportionment of PM2.5 pollution in Shenzhen[J]. China Environmental Science, 2019,39(1):15-22.
[7]
Hopke P K. Recent developments in receptor modeling[J]. Journal of Chemometrics, 2003,17(5):255-265.
[8]
冯银厂.我国大气颗粒物来源解析研究工作的进展[J]. 环境保护, 2017,45(21):17-20. Feng Y C. Research progress of source apportionment of atmospheric particulates in China[J]. Environmental Protection, 2017,45(21):17-20.
[9]
王丽涛,张普,杨晶,等.CMAQ-DDM-3D在细微颗粒物(PM2.5)来源计算中的应用[J]. 环境科学学报, 2013,33(5):1355-1361. Wang L T, Zhang P, Yang J, et al. Application of CMAQ-DDM-3D in the source analysis of fine particulate matter (PM2.5)[J]. Acta Scientiae Circumstantiae, 2013,33(5):1355-1361.
[10]
Bove M C, Brotto P, Cassola F, et al. An integrated PM2.5source apportionment study:Positive Matrix Factorisation vs. the chemical transport model CAMx[J]. Atmospheric Environment, 2014,94:274-286.
[11]
Streets D G, Fu J S, Jang C J, et al. Air quality during the 2008 Beijing Olympic Games[J]. Atmospheric Environment, 2007,41(3):480-492.
[12]
赵秀娟,姜华,王丽涛,等.应用CMAQ模型解析河北南部城市的霾污染来源[J]. 环境科学学报, 2012,32(10):2559-2567. Zhao X J, Jiang H, Wang L T, et al. Quantifying the source of haze pollution in southern Hebei cities using CMAQ model[J]. Acta Scientiae Circumstantiae, 2012,32(10):2559-2567.
[13]
李璇,聂滕,齐珺,等.2013年1月北京市PM2.5区域来源解析[J]. 环境科学, 2015,36(4):1148-1153. Li X, Nie T, Qi J, et al. Regional source apportionment of PM2.5 in Beijing in January 2013[J]. Environmental Science, 2015,36(4):1148-1153.
[14]
李珊珊,程念亮,徐峻,等.2014年京津冀地区PM2.5浓度时空分布及来源模拟[J]. 中国环境科学, 2015,35(10):2908-2916. Li S S, Cheng N L, Xu Z, et al. Spatial and temporal distrubions and source simulation of PM2.5 in Beijing-Tianjin-Hebei region in 2014[J]. China Environmental Science, 2015,35(10):2908-2916.
[15]
王媛林,李杰,李昂,等.2013~2014年河南省PM2.5浓度及其来源模拟研究[J]. 环境科学学报, 2016,36(10):3543-3553. Wang Y L, Li J, Li A, et al. Modeling study of surface PM2.5 and its source apportionment over Henan in 2013~2014[J]. Acta Scientiae Circumstantiae, 2016,36(10):3543-3553.
[16]
GB3095-2012环境空气质量标准[S]. GB3095-2012 Ambient air quality standard[S].
[17]
Wang T J, Hu Z Y, Xie M, et al. Atmospheric sulfur deposition onto different ecosystems over China[J]. Environmental Geochemistry & Health, 2004,26(2):169-177.
[18]
朱佳雷,王体健,邓君俊,等.长三角地区秸秆焚烧污染物排放清单及其在重霾污染天气模拟中的应用[J]. 环境科学学报, 2012,32(12):3045-3055. Zhu J L, Wang T J, Deng J J, et al. An emission inventory of air pollutants from crop residue burning in Yangtze River Delta Region and its application in simulation of a heavy haze weather process[J]. Acta Scientiae Circumstantiae, 2012,32(12):3045-3055.
[19]
陈璞珑,王体健,谢晓栋,等.基于数值模式的细颗粒物来源解析[J]. 科学通报, 2018,63(18):1829-1838. Chen P L, Wang T J, Xie X D, et al. Source apportionment of fine particles based on combined numerical model and receptor model[J]. Chinese Science Bulletin, 2018,63(18):1829-1838.
[20]
Zhang Q, Streets D G, Carmichael G R, et al. Asian emissions in 2006 for the NASA INTEX-B mission[J]. Atmospheric Chemistry and Physics, 2009,9(14):5131-5153.
[21]
Li M, Zhang Q, Kurokawa J I, et al. MIX:a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP[J]. Atmospheric Chemistry and Physics, 2017,17(2):935-963.
[22]
王占山,李云婷,张大伟,等.2014年北京市CO浓度水平和时空分布[J]. 中国环境监测, 2018,34(3):14-20. Wang Z S, Li Y T, Zhang D W, et al. Concentration level and spatiotemporal characteristics of CO in Beijing in 2014[J]. Environmental Monitoring in China, 2018,34(3):14-20.
[23]
吉东生,王跃思,孙扬,等.北京大气中SO2浓度变化特征[J]. 气候与环境研究, 2009,14(1):69-76. Ji D S, Wang Y S, Sun Y, et al. Characteristics of atmospheric SO2 in Beijing[J]. Climatic and Environmental Research (in Chinese), 2009,14(1):69-76.
[24]
苏彬彬,刘心东,陶俊,等.华东森林及高山背景区域SO2、NOx、CO本底特征[J]. 中国环境监测, 2013,29(6):15-21. Su B B, Liu X D, Tao J, et al. Pollution characteristics of SO2, NOX and CO in forest and mountain background region of east China[J]. Environmental Monitoring in China, 2013,29(6):15-21.
[25]
王占山,李云婷,孙峰,等.烟花爆竹燃放对北京市空气质量的影响研究[J]. 中国环境监测, 2016,32(4):15-21. Wang Z S, Li Y T, Sun F, et al. Study on the effect of burning of fireworks on air quality in Beijing[J]. Environmental Monitoring in China, 2016,32(4):15-21.
[26]
Wang G, Zhang R, Gomez M, et al. Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016,48(113):13630-13635.
[27]
Wang Y, Zhuang G, Zhang X, et al. The ion chemistry, seasonal cycle, and sources of PM2.5and TSP aerosol in Shanghai[J]. Atmospheric Environment, 2006,40(16):2935-2952.
[28]
EPA-454/B-07-002 Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, PM2.5, and regional haze[S].
[29]
王涛,李杰,王威,等.北京秋冬季一次重污染过程PM2.5来源数值模拟研究[J]. 环境科学学报, 2019,39(4):1025-1038. Wang T, Li J, Wang W, et al. Numerical simulation study on source apportionment of PM2.5in a heavy winter pollution event over Beijing area[J]. Acta Scientiae Circumstantiae, 2019,39(4):1025-1038.
[30]
聂滕,李璇,王占山,等.APEC期间北京市PM2.5时空分布与过程分析[J]. 中国环境科学, 2016,36(2):349-355. Nie T, Li X, Wang Z S, et al. Spatial and temporal distribution and process analysis of PM2.5 pollution over Beijing during APEC[J]. China Environmental Science, 2016,36(2):349-355.
[31]
周广强,谢英,吴剑斌,等.基于WRF-Chem模式的华东区域PM2.5预报及偏差原因[J]. 中国环境科学, 2016.36(8):2251-2259. Zhou G Q, Xie Y, Wu J B, et al. WRF-Chem based PM2.5forecast and bias analysis over the East China Region[J]. China Environmental Science, 2016,36(8):2251-2259.
[32]
Hanna S R, Lu Z, Frey H C, et al. Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain[J]. Atmospheric Environment, 2001,35(5):891-903.
[33]
Wang L T, Wei Z, Yang J, et al. The 2013severe haze over southern Hebei, China:model evaluation, source apportionment, and policy implications[J]. Atmospheric Chemistry and Physics, 2014,14(6):3151-3173.
[34]
Li X, Zhang Q, Zhang Y, et al. Source contributions of urban PM2.5 in the Beijing-Tianjin-Hebei region:Changes between 2006 and 2013 and relative impacts of emissions and meteorology[J]. Atmospheric Environment, 2015,123:229-239.
[35]
王申博,余雪,赵庆炎,等.郑州市两次典型大气重污染过程成因分析[J]. 中国环境科学, 2018,38(7):2425-2431. Wang S B, Yu X, Zhao Q Y, et al. Analysis of the formation of two typical atmospheric heavy pollution episodes in Zhengzhou, China[J]. China Environmental Science, 2018,38(7):2425-2431.
[36]
曹宁,黄学敏,祝颖,等.西安冬季重污染过程PM2.5理化特征及来源解析[J]. 中国环境科学, 2019,39(1):34-41. Cao N, Huang X M, Zhu Y, et al. Pollution characteristics and source apportionment of fine particles during a heavy pollution in winter in Xi'an City[J]. China Environmental Science, 2019,39(1):34-41.