The effects of artificial biological soil crusting on the physical and chemical properties and erosion resistance of rare-earth mine tailings
WANG Jiang-ping1, DENG Yang-wu1,2, HUANG Jin1, WANG Hui-juan1, TANGChun1,2, TONGYao-yao1,2, CHEN Ming1,2
1. National Engineering Research Center For Ionic Rare Earth/Jiangxi Ionic Rare Earth Engineering Research Co., Ltd., Ganzhou 341000, China; 2. Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract:An ionic rare earth mine in Lingbei town, Dingnan county, Ganzhou city, Jiangxi Province, China, were taken as a study object. Biological soil crusts (BSCs) and tailings were collected and artificial BSCs were cultivated using crust-cuttings inoculation method. The effects of BSCs on the ionic rare earth tailings was analyzed by the comparison with a control without BSCs inoculation. After 300days of development of artificial BSCs, the effects of artificial BSCs growth and development on the dynamics of pH, bulk density, organic matter content, total and available content of other nutrients, mechanical composition as well as on soil erosion resistance and water retention capacity of the tailings were explored. The results showed that artificial BSCs could be cultivated in short time by crust-cuttings inoculation method, and improved the physical, chemical, and hydrological properties of the sample tailings, as compared with the control. After 300days of development of artificial BSCs, the SA (soil acidity) was significantly reduced, and the pH increased by 6.8% from 5.88 to 6.28; The SBD (soil bulk density) decreased by 11.6 %, and the OM (organic matter), TN (total nitrogen), AN (available nitrogen), TP (total phosphorus), AP (available phosphorus), TK (total potassium) and AK (available potassium) increased by 294%, 21.6%, 81.8%, 100%, 260%, 8.9% and 52.4%, respectively; The content of silt and clay increased a little; The soil erosion resistance and water retention capacity were both significantly improved. Therefore, artificial biological soil crusting could be an effective method for ecological restoration of ionic rare earth mines.
汪江萍, 邓扬悟, 黄金, 王慧娟, 唐纯, 童瑶瑶, 陈明. 人工BSCs对稀土尾砂理化性质及抗蚀性的影响[J]. 中国环境科学, 2021, 41(1): 327-334.
WANG Jiang-ping, DENG Yang-wu, HUANG Jin, WANG Hui-juan, TANGChun, TONGYao-yao, CHEN Ming. The effects of artificial biological soil crusting on the physical and chemical properties and erosion resistance of rare-earth mine tailings. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(1): 327-334.
李新荣,张元明,赵允格.生物土壤结皮研究:进展,前沿与展望[J]. 地球科学进展, 2009,24(1):11-24. Li X R, Zhang Y M, Zhao Y G. A study of biological soil crusts:recent development, trend and prospect[J]. Advances in Earth Science, 2009,24(1):11-24.
[2]
张冠华,胡甲均.生物结皮土壤-水文-侵蚀效应研究进展[J]. 水土保持学报, 2019,33(1):1-8. Zhang G H, Hu J J. Advances in Soil-Hydrology-Erosion Effects of Biological Soil Crusts[J]. Journal of Soil and Water Conservation, 2019,33(1):1-8.
[3]
Nyenda T, Jacobs S M, Gwenzi W, et al. Biological crust enhance fertility and texture of gold mine tailings[J]. Ecological Engineering, 2019,135:54-60.
[4]
吴玉环,高谦,程国栋.生物土壤结皮的生态功能[J]. 生态学杂志, 2002,21(4):41-45. Wu Y H, Gao Q, Cheng G D. Ecological function of biological soil crust[J]. Chinese Journal of Ecology, 2002,21(4):41-45.
[5]
李守中,肖洪浪,李新荣,等.干旱,半干旱地区微生物结皮土壤水文学的研究进展[J]. 中国沙漠, 2004,(4):500-506. Li S Z, Xiao H L, Li X R, et al. Advances in research about influence of microbiotic crust on soil hydrological process in semiarid and arid Zones[J]. Journal of Desert Research, 2004,(4):500-506.
[6]
李新荣,贾玉奎,龙利群,等.干旱半干旱地区土壤微生物结皮的生态学意义及若干研究进展[J]. 中国沙漠, 2001,21(1):4-11. Li X R, Jia Y K, Long L Q, et al. Advances in microbiotic soil crust research and its ecological significance in arid and semiarid regions[J]. Journal of Desert Research, 2001,21(1):4-11.
[7]
Eldridge D J, Greene R S B. Microbiotic crusts:a view of the roles in soil and ecological processes in the rangelands of Australia[J]. Australian Journal of Soil Research, 1994,32:389-415.
[8]
Reynaud P A, Lumpkin T A. Microalgae of the Lanzhou (China) cryptogamic crust[J]. Arid Soil Research and Rehabilitation, 1988,2:1145-155.
[9]
张军红,吴波.油蒿与臭柏沙地生物结皮对土壤理化性质的影响[J]. 东北林业大学学报, 2012,40(3):58-61. Zhang J H, Wu B. Influences of biological soil crusts on physicochemical properties of soil in Artemisia ordosica and Sabina vulgaris communities[J]. Journal of Northeast Forestry University, 2012,40(3):58-61.
[10]
高丽倩,赵允格,许明祥,等.生物土壤结皮演替对土壤生态化学计量特征的影响[J]. 生态学报, 2018,38(2):1-11. Gao L Q, Zhao Y G, Xu M X, et al. The effects of biological soil crust succession on soil ecological stoichiometry characteristics[J]. Acta Ecologica Sinica, 2018,38(2):1-11.
[11]
倪含斌,张丽萍,蔡甫款.生物土壤结皮对土壤水蚀影响的模拟试验研究[J]. 科技通报, 2012,28(11):216-219. Ni H B, Zhang L P, Cai F K. Experimental study on impact of soil microbiotic crust on soil erosion in Shen-Dong mine region[J]. Bulletin of Science and Technology, 2012,28(11):216-219.
[12]
高丽倩,赵允格,秦宁强,等.黄土丘陵区生物结皮对土壤可蚀性的影响[J]. 应用生态学报, 2013,24(1):105-112. Gao L Q, Zhao Y G, Qin N Q, et al. Effects of biological soil crust on soil erodibility in Hilly Loess Plateau region of northwest China[J]. Chinese Journal of Applied Ecology, 2013,24(1):105-112.
[13]
秦宁强,赵允格.生物土壤结皮对雨滴动能的响应及消减作用[J]. 应用生态学报, 2011,22(9):2259-2264. Qin N Q, Zhao Y G. Responses of biological soil crust to and its relief effect on raindrop kinetic energy[J]. Chinese Journal of Applied Ecology, 2011,22(9):2259-2264.
[14]
赵允格,许明祥,王全九,等.黄土丘陵区退耕地生物结皮对土壤理化性状的影响[J]. 自然资源学报, 2006,21(3):441-448. Zhao Y G, Xu M X, Wang Q J, et al. Impact of biological soil crust on soil physical and chemical properties of rehabilitated grassland in Hilly Loess Plateau, China[J]. Journal of Natural Resources, 2006, 21(3):441-448.
[15]
Jeffries D L, Link S O, Klopatek J M. CO2 fluxes of cryptogamic crusts. I. Response to resaturation[J]. New Phytologist, 1993,125:163-173.
[16]
Lange O L. Photosynthesis and water relations of lichen soil crusts:Field measurements in the coastal fog zone of the Namib Desert[J]. Functional Ecology, 1994,8:253-264.
[17]
赵允格,许明祥,王全九,等.黄土丘陵区退耕地生物结皮理化性状初报[J]. 应用生态学报, 2006,17(8):1429-1434. Zhao Y G, Xu M X, Wang Q J, et al. Physical and chemical properties of soil bio-crust on rehabilitated grassland in Hilly Loess Plateau of China[J]. Chinese Journal of Applied Ecology, 2006,17(8):14291434.
[18]
Belnap J. Soil surface disturbances in cold deserts:Effects on nitrogenase activity in cyanobacterial-lichen soil crusts[J]. Biology and Fertility of Soils, 1996,23:362-367.
[19]
Harper K T, Pendleton R L. Cyanobacteria and cyanolichens:Can they enhance availability of essential minerals for higher plants[J]. Great Basin Naturalist, 1993,53:59-72.
[20]
刘利霞,张宇清,吴斌.生物结皮对荒漠地区土壤及植物的影响研究述评[J]. 中国水土保持科学, 2007,5(6):106-112. Liu L X, Zhang Y Q, Wu B. Review on the influences of biological soil crusts on soil and vegetation in desertified areas[J]. Science of Soil and Water Conservation, 2007,5(6):106-112.
[21]
陈彦芹,赵允格,冉茂勇.黄土丘陵区藓结皮人工培养方法试验研究[J]. 西北植物学报, 2009,29(3):0586-0592. Chen Y Q, Zhao Y G, Ran M Y. Experimental Research on Artificial Culture Method of Moss Crust in Hilly Loess Plateau Region[J]. Acta Bot. Boreal. -Occident. Sin., 2009,29(3):0586-0592.
[22]
肖波,赵允格,邵明安.黄土高原侵蚀区生物结皮的人工培育及其水土保持效应[J]. 草地学报, 2008,16(1):28-33. Xiao B, Zhao Y G, Shao M A. Artificial cultivation of biological soil crust and its effects on soil and water conservation in water-wind erosion crisscross region of loess plateau, China[J]. Acta Agrestia Sinica, 2008,16(1):28-33.
[23]
NY/T 85-1988土壤有机质测定法[S]. NY/T 85-1988 Standard assay of soil organic matter[S].
[24]
NY/T 1121.4-2006土壤检测 第4部分:土壤容重的测定[S]. NY/T 1121.4-2006 Soil assay, section 4:Bulk density of soil[S].
[25]
HJ 717-2014土壤质量 全氮的测定 凯氏法[S]. HJ 717-2014 Soil quality, assay for total nitrogen, Kjeldahl determination[S].
[26]
DB13/T843-2007土壤速效氮测定[S]. DB13/T843-2007 Assay of soil available nitrogen[S].
[27]
LY/T 1232-2015森林土壤磷的测定[S]. LY/T 1232-2015 Assay of forest soil phosphorus[S].
[28]
LY/T 1234-2015森林土壤钾的测定[S]. LY/T 1234-2015 Assay of forest soil potassium[S].
[29]
GB 6920-1986水质pH值的测定-玻璃电极法[S]. GB 6920-1986 Water quality-Determination of pH value-Glass electrode method[S].
Beymer R J, Klopatek J M. Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands[J]. Arid Land Research and Management, 1991,5:187-198.
[32]
Kleiner E F, Harper K T. Soil properties in relation to cryptogamic ground cover in Canyonlands National Park[J]. J. Range Manage., 1997,30:203-205.
[33]
孟杰,卜崇峰,李莉,等.侵蚀条件下生物结皮对坡面土壤碳氮的影响[J]. 中国水土保持科学, 2011,9(3):45-51. Meng J, Bu C F, Li L, et al. Effects of biological soil crust on slope soil carbon and nitrogen under erosion conditions[J]. Science of Soil and Water Conservation, 2011,9(3):45-51.
[34]
Eldridge D J, Rozer M E, Slangen S. Soil hydrology is independent of microphytic crust cover:further evidence from a wooded semiarid Australian rangeland[J]. Arid Soil Research and Rehabilitation, 1997, 11:113-126.
[35]
Eldridge D J. Cryptogam cover and soil surface condition:effects on hydrology on a semiarid woodland soil[J]. Arid Land Research and Management, 1993,7:203-217.
[36]
Li X R, Zhang J G, Wang X P, et al. Study on soil microbiotic crust and its influences on sand-fixing vegetation in arid desert region[J]. Acta Botanica Sinica, 2000,42(9):1-6.
[37]
李启艳,翁炳霖,李宗勋,等.稀土矿废弃地植被恢复过程中土壤微生物演[J]. 中国环境科学, 2019,39(10):4360-4368. Li Q Y, Weng B L, Li Z X, et al. Soil physicochemical characteristics and microbial evolution during vegetation restoration in ionic rare earth ore heap leaching waste land[J]. China Environmental Science, 2019,39(10):4360-4368.
[38]
王友生,侯晓龙,蔡丽平,等.稀土开采对土壤细菌群落组成与多样性的影响[J]. 中国环境科学, 2017,37(8):3089-3095. Wang Y S, Hou X L, Cai L P, et al. Impacts of rare earth mining on soil bacterial community composition and biodiversity[J]. China Environmental Science, 2017,37(8):3089-3095.