Contents of heavy metals in soils and crops in the demonstration area of karst rocky desertification control of the Karst Plateau-Gorge
YAO Cheng-bin1, ZHOU Ming-zhong1, XIONG Kang-ning2, ZHANG Di1, YANG Hua1, ZHANG Xian-rong1, YANG Lian-sheng1
1. School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550001, China; 2. Research Institute of Karst, Guizhou Normal University, Guiyang 550001, China
Abstract:In this study, we collected samples of agriculture soils and dominant crops in Salaxi of Bijie Guizhou Province, and analyzed the contents of heavy metals Cr, Co, Cu, Cd, Pb, Zn, As, and Ni in soil and crop samples. The enrichment factor were calculated to assess the pollution status of soils and crops. Furthermore, the potential ecological risk index (RI) and bioconcentration coefficient were used to evaluate the potential ecological risk of soil heavy metals and the characteristics of crops' heavy metal enrichment in the demonstration area.The results showed that the average contents of Cr, Co, Cu, Cd, Pb, Zn, As, and Ni in the soil of the demonstration area were 123, 28.0, 67.8, 1.52, 32.7, 132, 25.6, and 56.5mg/kg, all elements are below the risk screening values for soil contamination of agricultural land, except Cd. Among them, the evaluation grade of heavy metal pollution in forest soil is non-pollution-slight pollution, individual samples of Cd and Cu in dry land soil have moderate pollution, and the others are non-pollution-light pollution. The results of potential ecological risk assessment showed that the moderate ecological risk was posed by Cd. Followed by Cr, Co, Cu, Pb, Zn, As and Ni were all of low ecological risk, and the comprehensive ecology of 8heavy metals the risk level is minor ecological risk.Meanwhile,the bioconcentration factor of Cd in potatoes is 4.05, and the enrichment factor of other heavy metals is less than 2.Through this study, we can know that different crops have different heavy metal enrichment capacities in the soil. Among them, Cd, Zn, Co, Cu, Pb and Ni have relatively high migration and enrichment capacities in the Soil-Potato system, Cr and As have relatively high migration and enrichment capacities in the Soil-Maize system, while the remaining crops have relatively weak heavy metal enrichment capacities.
姚成斌, 周明忠, 熊康宁, 张迪, 杨桦, 张先荣, 杨连升. 喀斯特高原石漠化治理示范区土壤和农作物重金属含量特征[J]. 中国环境科学, 2021, 41(1): 316-326.
YAO Cheng-bin, ZHOU Ming-zhong, XIONG Kang-ning, ZHANG Di, YANG Hua, ZHANG Xian-rong, YANG Lian-sheng. Contents of heavy metals in soils and crops in the demonstration area of karst rocky desertification control of the Karst Plateau-Gorge. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(1): 316-326.
Khan S, Rehman S, Khan A Z, et al. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan[J]. Ecotoxicology and Environmental Safety, 2010,73(7):1820-1827.
[2]
Singh U K, Kumar B. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India[J]. Chemosphere, 2017,174:183-199.
[3]
Gevorg T, Lilit S, Olga B, et al. Continuous impact of mining activities on soil heavy metals levels and human health[J]. Science of The Total Environment, 2018,639:900-909.
[4]
张桃林.科学认识和防治耕地土壤重金属污染[J]. 土壤, 2015, 47(3):435-439. Zhang T L. More comprehensive understanding and effective control of heavy metal pollution of cultivated soils in China[J]. Soils, 2015, 47(3):435-439.
[5]
张军,董洁,梁青芳,等.宝鸡市区土壤重金属污染影响因子探测及其源解析[J]. 环境科学, 2019,40(8):3774-3784. Zhang J, Dong J, Liang Q F. Heavy metal pollution characteristics and influencing factors in Baoji arban soils[J]. Environmental Science, 2019,40(8):3774-3784.
[6]
Grusak M A, Dellapenna D. Improving the nutrient composition of plants to enhance human nutrition and health[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999,50(1):133-161.
[7]
Welch R M, Graham R D. A new paradigm for world agriculture:meeting human needs:Productive, sustainable, nutritious[J]. Field Crops Research, 1999,60(1/2):0-10.
[8]
Amin N U, Hussain A, Alamzeb S, et al. Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan[J]. Food Chemistry, 2013,136(3/4):1515-1523.
[9]
Eqani S A M A S, Kanwal A, Bhowmik A K, et al. Spatial distribution of dust-bound trace elements in Pakistan and their implications for human exposure[J]. Environmental Pollution, 2016,213:213-222.
[10]
Arora M, Kiran B, Rani S, et al. Heavy metal accumulation in vegetables irrigated with water from different sources[J]. Food Chemistry, 2008,111(4):811-815.
[11]
Edelstein M, Ben-Hur M. Heavy metals and metalloids:Sources, risks and strategies to reduce their accumulation in horticultural crops[J]. Scientia Horticulturae, 2018,234:431-444.
[12]
Langard S, Andersen A, Gylseth B. Incidence of Cancer among Ferrochromium and Ferrosilicon Workers[J]. British Journal of Industrial Medicine, 1980,37(2):114-120.
[13]
Simonsen L O, Harbak H, Bennekou P. Cobalt metabolism and toxicology-A brief update[J]. Science of the Total Environment, 2012,432(15):210-215.
[14]
Sani H A, Ahmad M B, Hussein M Z, et al. Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions[J]. Process Safety and Environmental Protection, 2017,109:97-105.
[15]
USEPA. Risk based concentration table[R]. United States Environmental Protection Agency, Washington DC. 2000.
[16]
Rehman I U, Ishaq M, Ali L, et al. Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan[J]. Ecotoxicol Environ Saf, 2018, 154:127-136.
[17]
姚成斌,周明忠,熊康宁,等.镍钼多金属矿区土壤铀污染状况及来源分析[J]. 贵州师范大学学报(自然科学版), 2020,38(1):14-20. Yao C B, Zhou M Z, Xiong K N, et al. Contamination degree and source of Uranium in soils around the Ni-Mo polymetallic mining area[J]. Journal of Guizhou Normal University (Natural Sciences), 2020,38(1):14-20.
[18]
Saleh T A, Tuzen M, Sari A. Polyethylenimine modified activated carbon as novel 13 magnetic adsorbent for the removal of uranium from aqueous solution, Chemical Engineering Research and Design, 2017,117:218-227.
[19]
马宏宏,彭敏,刘飞,等.广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020,41(1):449-459. Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020,41(1):449-459.
[20]
张建,杨瑞东,陈蓉,等.贵州喀斯特地区土壤-辣椒体系重金属元素的生物迁移积累特征[J]. 食品科学, 2017,38(21):175-181. Zhang J, Yang R D, Chen R, et al. Bioconcentration of heavy metals in soil-capsicum annuum L. system in karst areas of Guizhou Province[J]. Food Science, 2017,38(21):175-181.
[21]
畅凯旋,叶丽丽,陈永山,等.广西喀斯特地区土壤多金属胁迫对水稻重金属积累及生理特性的影响[J]. 农业环境科学学报, 2018, 37(1):27-35. Chang K X, Ye L L, Chen Y S, et al. Impact of high concentrations of heavy metals in agricultural soil on heavy metals accumulation and physiological characteristics of rice (Oryza sativa L.) in karst areas in Guangxi, China[J]. Journal of Agro-Environment Science, 2018,37(1):27-35.
[22]
李世亮,倪张林,莫润宏,等.云贵川主产区核桃中重金属污染水平及其风险评估[J]. 林业科学, 2017,53(11):52-59. Li S L, Ni Z L, Mo R H, et al. The contents and risk assessments of heavy metals in walnuts from the main producing areas of Yunnan, Guizhou, Sichuan Provinces[J]. Scientia Silvae Sinicae, 2017,53(11):52-59.
[23]
肖华,熊康宁.小流域石漠化综合治理技术空间优化配置——以毕节撒拉溪示范区为例[J]. 中国人口·资源与环境, 2016,26(S2):236-239. Xiao H, Xiong K N. Spatial optimization allocation for comprehensive control technology in catchment:with a special reference to Bijie Salaxi Rocky Desertification Control Demonstration Area[J]. China Population, Resources and Environment, 2016,26(S2):236-239.
[24]
王璐,喻阳华,邢容容,等.喀斯特高寒干旱区不同经济树种的碳氮磷钾生态化学计量特征[J]. 生态学报, 2018,38(15):5393-5403. Wang L, Yu Y H, Xing R R, et al. Ecological stoichiometry characteristics of carbon, nitrogen, phosphorus, and potassium of different economic tree species in the karst frigid and arid area[J]. Acta Ecologica Sinica, 2018,38(15):5393-5403.
[25]
舒田,熊康宁,陈丽莎,等.基于遥感的石漠化治理下土壤肥力变化特征分析[J]. 生态环境学报, 2019,28(4):776-785. Shu T, Xiong K N, Chen L S, et al. Analysis on variation characteristics of soil fertility under rocky desertification control based on remote sensing[J]. Ecology and Environmental Sciences, 2019, 28(4):776-785.
[26]
李渊,刘子琦,吕小溪,等.贵州毕节石漠化地区洞穴上覆土壤与基岩对滴水元素特征的影响[J]. 环境化学, 2016,35(9):1894-1902. Li Y, Liu Z Q, Lu X X, et al. Effect of cave overlying soil and bedrock on drip water elements in rocky desertifiton area in Bijie, Guizhou[J]. Environmental Chemistry, 2016,35(9):1894-1902.
郭笑笑,刘丛强,朱兆洲,等.土壤重金属污染评价方法[J]. 生态学杂志, 2011,30(5):889-896. Guo X X, Liu C Q, Zhu Z Z, et al. Evaluation method for soil heavy metal contamination[J]. Chinese Journal of Ecology, 2011,30(5):889-896.
[29]
范晓婷,蒋艳雪,崔斌,等.富集因子法中参比元素的选取方法——以元江底泥中重金属污染评价为例[J]. 环境科学学报, 2016,36(10):3795-3803. Fan X T, Jiang Y X, Cui B, et al. Selection of a reference element for enrichment factor:A case study on the pollution evaluation of heavy metals in the sediment of Yuan river[J]. Acta Scientiae Circumstantiae, 2016,36(10):3795-3803.
[30]
Sakan S M, Đorđević D S, Manojlović D D, et al. Assessment of heavy metal pollutants accumulation in the Tisza river sediments[J]. Journal of Environmental Management, 2009,90(11):3382-3390.
[31]
Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water research, 1980,14(8):975-1001.
[32]
Lu S, Teng Y, Wang Y, et al. Research on the ecological risk of heavy metals in the soil around a Pb-Zn mine in the Huize County, China[J]. Chinese Journal of Geochemistry, 2015,34(4):540-549.
Yenilmez F, Kuter N, Emil M K, et al. Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS[J]. International journal of coal geology, 2011,86(1):12-19.
[35]
张迪,周明忠,熊康宁,等.贵州遵义松林Ni-Mo多金属矿区土壤Ni污染及农作物健康风险评价[J]. 农业环境科学学报, 2019,38(2):356-365. Zhang D, Zhou M Z, Xiong K N, et al. Risk assessment of nickel in soils and crops around the Ni-Mo polymetallic mining area in Songlin, Zunyi, China[J]. Journal of Agro-Environment Science, 2019,38(2):356-365.
[36]
张迪,周明忠,熊康宁,等.遵义松林Ni-Mo矿区土壤Cu,Zn污染及农作物健康风险评价[J]. 地球与环境, 2018,46(6):581-589. Zhang D, Zhou M Z, Xiong K N, et al. Risk assessment of copper and zinc in soils and crops around the Ni-Mo mining area of Songlin, Zunyi, China[J]. Earth and Environment, 2018,46(6):581-589.
[37]
金昭贵,周明忠.遵义松林Ni-Mo矿区耕地土壤的镉砷污染及潜在生态风险评价[J]. 农业环境科学学报, 2012,31(12):2367-2373. Jin Z G, Zhou M Z. An assessment on contamination and potential ecological risk of cadmium and arsenic in the cultivated soils around the Ni-Mo mining area in Songlin, Zunyi, China[J]. Journal of Agro-Environment Science, 2012,31(12):2367-2373.
[38]
姚成斌,周明忠,熊康宁,等.Ni-Mo多金属矿区土壤和农作物铬,钴污染及健康风险评价[J]. 安徽农业大学学报, 2020,47(1):109-117. Yao C B, Zhou M Z, Xiong K N, et al. Health risk assessment of chromium and cobalt in soils and crops around the Ni-Mo polymetallic mining area[J]. Journal of Anhui Agricultural University, 2020,47(1):109-117.
[39]
张家春,曾宪平,张珍明,等.喀斯特林地土壤重金属形态特征及其评价[J]. 水土保持研究, 2019,26(6):347-352,358. Zhang J C, Zeng X P, Zhang Z M, et al. Characteristics and evaluation of speciation of heavy metals in forest soils of karst[J]. Research of Soil and Water Conservation, 2019,26(6):347-352,358.
[40]
闫金龙,郭小华,李伟,等.化肥中重金属元素含量的测定[J]. 广东化工, 2014,41(1):163-164. Yan J L, Guo x h, Li W, et al. Determination of heavy metals in fertilizer[J]. Guangdong Chemical Industry, 2014,41(1):163-164.
[41]
赵盼弟,熊康宁,肖时珍,等.喀斯特山区农村生活能源利用现状及对策——以贵州毕节撒拉溪示范区为例[J]. 信阳师范学院学报(自然科学版), 2015,28(2):209-213. Zhao P D, Xiong K N, Xiao S Z, et al. The current ctilization situation and countermeasures of rural life energy in karst mountain areas-with a special reference to Salaxi Demonstration Area, Bijie, Guizhou[J]. Journal of Xinyang Normal University (Natural Science Edition), 2015,28(2):209-213.
[42]
余志,陈凤,张军方,等.锌冶炼区菜地土壤和蔬菜重金属污染状况及风险评价[J]. 中国环境科学, 2019,39(5):2086-2094. Yu Z, Chen F, Zhang J F, et al. Contamination and risk of heavy metals in soils and vegetables from zinc smelting area[J]. China Environmental Science, 2019,39(5):2086-2094.
[43]
Cui L, Feng X, Lin C J, et al. Accumulation and translocation of 198 Hg in four crop species[J]. Environmental Toxicology & Chemistry, 2014,33(2):334-340.
[44]
Guan G, Song X U. The regularity of distribution, change and migration of heavy metals in soil-rice plant system[J]. Ecology & Environment, 2006,15(2):315-318.
[45]
Kong X Y, Liu T, Yu Z H, et al. Heavy metal bioaccumulation in rice from a high geological background area in Guizhou Province, China[J]. Environment Research and Public Health, 2018,15(10):2281.
[46]
陈同斌,宋波,郑袁明,等.北京市菜地土壤和蔬菜镍含量及其健康风险[J]. 自然资源学报, 2006,21(3):349-361. Chen T B, Song B, Zheng Y M, et al. A survey of nickel concentrations in vegetables and vegetable soils of Beijing and their healthy risk[J]. Journal of Natural Resources, 2006,21(3):349-361.
[47]
李杰,朱立新,康志强.南宁市郊周边农田土壤-农作物系统重金属元素迁移特征及其影响因素[J]. 中国岩溶, 2018,37(1):43-52. Li J, Zhu L X, Kang Z Q. Characteristics of transfer and their influencing factors of heavy metals in soil-crop system of peri-urban agricultural soils of Nanning, South China[J]. Carsologica Sinica, 2018,37(1):43-52.
[48]
李如忠,潘成荣,徐晶晶,等.典型有色金属矿业城市零星菜地蔬菜重金属污染及健康风险评估[J]. 环境科学, 2013,34(3):1076-1085. Li R Z, Pan C R, Xu J J, et al. Contamination and health risk for heavy metals via consumption of vegetables grown in fragmentary vegetable plots from a typical nonferrous metals mine city[J]. Environmental Science, 2013,34(3):1076-1085.
[49]
陈凤,董泽琴,王程程,等.锌冶炼区耕地土壤和农作物重金属污染状况及风险评价[J]. 环境科学, 2017,38(10):4360-4369. Chen F, Dong Z Q, Wang C C, et al. Heavy metal contamination of soils and crops near a Zinc Smelter[J]. Environmental Science, 2017,38(10):4360-4369.
[50]
吴洋,杨军,周小勇,等.广西都安县耕地土壤重金属污染风险评价[J]. 环境科学, 2015,36(8):2964-2971. Wu Y, Yang J, Zhou X Y, et al. Risk assessment of heavy metal contamination in farmland soil in Du'an Autonomous County of Guangxi Zhuang Autonomous Region, China[J]. Environmental Science, 2015,36(8):2964-2971.
[51]
洪涛,孔祥胜,岳祥飞.滇东南峰丛洼地土壤重金属含量,来源及潜在生态风险评价[J]. 环境科学, 2019,40(10):4620-4627. Hong T, Kong X S, Yue X F. Concentration characteristics, source analysis, and potential ecological risk assessment of heavy metals in a peak-cluster depression area, Southeast of Yunnan Province[J]. Environmental Science, 2019,40(10):4620-4627.
[52]
刘意章,肖唐付,熊燕,等.西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019,40(6):2877-2884. Liu Y Z, Xiao T F, Xiong Y, et al. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium, Southwestern China[J]. Environmental Science, 2019,40(6):2877-2884.
[53]
葛晓颖,欧阳竹,杨林生,等.环渤海地区土壤重金属富集状况及来源分析[J]. 环境科学学报, 2019,39(6):1979-1988. Ge X Y, Ou Y Z, Yang L S, et al. Concentration, risk assessment and sources of heavy metals in soil around Bohai rim[J]. Acta Scientiae Circumstantiae, 2019,39(6):1979-1988.
[54]
韩志轩,王学求,迟清华,等.珠江三角洲冲积平原土壤重金属元素含量和来源解析[J]. 中国环境科学, 2018,38(9):3455-3463. Han Z X, Wang X Q, Chi Q H, et al. Occurrence and source identification of heavy metals in the alluvial soils of Pearl River Delta region, south China[J]. China Environmental Science, 2018,38(9):3455-3463.
[55]
Duzgoren-Aydin N S. Sources and characteristics of lead pollution in the urban environment of Guangzhou[J]. Science of the Total Environment, 2007,385:182-195.