Spatial and temporal distribution of absorbing aerosol in Southwest China
WANG Xin-ying1,2, LI Ying-fang1,3, GUI Ke3, LIAO Ting-ting1
1. Plateau Atmospheric and Environment Key Laboratory of Sichuan Province, College of Atmosphere Sciences, Chengdu University of Information Technology, Chengdu 610225, China; 2. School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou 510275, China; 3. Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Abstract:We used MERRA-2reanalysis data, CALIPSO satellite inversion data, and ERA5 reanalysis data to study the spatial and temporal distribution of absorbing aerosols over southwest China from 2006 to 2017. The Sichuan Basin and southern Yunnan had a downward overall trend, albeit with a strong seasonal signal. Second, analysis of the three-dimensional distribution of smoke demonstrated that the extinction coefficient of smoke in Yunnan-Guizhou Plateau and the Sichuan basin are both significant, with the Yunnan-Guizhou Plateau larger of the two. Third, smoke aerosols found to be lofted to about 8~ 10km (above sea level) in the summer over the Qinghai-Tibet Plateau, whereas they were mainly distributed between about 2~4km over the Yunnan-Guizhou Plateau and about 1~3km over the Sichuan Basin.
王新莹, 李颖芳, 桂柯, 廖婷婷. 我国西南地区吸收性气溶胶时空分布[J]. 中国环境科学, 2021, 41(7): 3096-3105.
WANG Xin-ying, LI Ying-fang, GUI Ke, LIAO Ting-ting. Spatial and temporal distribution of absorbing aerosol in Southwest China. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(7): 3096-3105.
Markowicz K M, Zawadzka-Manko O, Lisok J, et al. The impact of moderately absorbing aerosol on surface sensible, latent, and net radiative fluxes during the summer of 2015in Central Europe[J]. Journal of Aerosol Science, 2020,151:105627.
[2]
Cai J X, Guan Z Y, Ma F H. Possible combined influences of absorbing aerosols and anomalous atmospheric circulation on summertime diurnal temperature range variation over the middle and lower reaches of the Yangtze River[J]. Journal of Meteorological Research, 2016,(6):97-113.
[3]
Johnson B T, Shine K P, Forster P M. The semi-direct aerosol effect:Impact of absorbing aerosols on marine stratocumulus[J]. Quarterly Journal of the Royal Meteorological Society, 2010,130(599):1407-1422.
[4]
TR Bolaño-Ortiz, Pascual-Flores R M, AI López-Noreña, et al. Assessment of absorbing aerosols on austral spring snow albedo reduction by several basins in the Central Andes of Chile from daily satellite observations (2000~2016) and a case study with the WRF-Chem model[J]. SN Applied Sciences, 2019,1(11)1352:1365.
[5]
Garcia-Menendez F, Hu Y, Odman M T. Simulating smoke transport from wildland fires with a regional-scale air quality model:Sensitivity to spatiotemporal allocation of fire emissions[J]. Science of the Total Environment, 2014,493(15):544-553.
[6]
Li Z, Niu F, Fan J, et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation[J]. Nature Geoscience, 2011, 4(12):888-894.
[7]
白莹莹,张德军,杨世琦,等.川渝地区雾霾时空分布特征及影响因子分析[J]. 西南师范大学学报(自然科学版), 2018,43(11):112-119. Bai Y Y, Zhang D J, Yang S Q, et al. Spatial and temporal distribution characteristics and influencing factors analysis of smog in Sichuan——Chongqing[J]. Journal of Southwest China Normal University (Natural Science Edition), 2018,43(11):112-119.
[8]
刘旻霞,李亮,于瑞新,等.汾渭平原吸收性气溶胶时空演化及潜在源区分析[J]. 环境科学, 2021,42(06):2634-2647. Liu M X, Li L, Yu R X,et al. Analysis of space-time and potential source of absorbing aerosol in Fenwei Plain[J]. Environmental Science, 2021,42(6):2634-2647.
[9]
侯灿,张峰,黄勇,等.华北地区沙尘天气垂直气溶胶直接辐射强迫[J]. 中国环境科学, 2020,40(12):5169-5181. Hou C, Zhang F, Huang Y, et al. Vertical distribution of aerosol direct radiative forcing in dust events over north China[J]. China Environmental Science, 2020,40(12):5169-5181.
[10]
张国强,巨天珍,王勤花,等.宁夏吸收性气溶胶时空分布及其影响因素研究[J]. 中国环境科学, 2020,40(6):54-63. Zhang G Q, Ju T Z, Wang Q H, et al. Studying on spatial and temporal distribution of absorbent aerosols and its influencing factors in Ningxia[J]. China Environmental Science, 2020,40(6):54-63.
[11]
李逢帅,巨天珍,马超,等.基于卫星遥感的甘肃省吸收性气溶胶的研究[J]. 中国环境科学, 2019,39(10):4082-4092. Li F S, Ju T Z, Ma C, et al. Absorption aerosol in Gansu Province based on satellite remote sensing[J]. China Environmental Science, 2019,39(10):4082-4092.
[12]
宋明昊,张小玲,袁亮,等.成都冬季一次持续污染过程气象成因及气溶胶垂直结构和演变特征[J]. 环境科学学报, 2020,40(2):408-417. Song M H, Zhang X L, Yuan L, et al. Meteorological effects and aerosol vertical structure and evolution characteristics of a continuous pollution process in winter in Chengdu[J]. Acta Scientiae Circumstantiae, 2020,40(2):408-417.
[13]
Liao T, Wang S, Ai J, et al. Heavy pollution episodes, transport pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu (China)[J]. Science of the Total Environment, 2017,584-585(apr.15):1056-1065.
[14]
Tao J, Zhang L, Cao J, et al. Characterization and source apportionment of aerosol light extinction in Chengdu, southwest China[J]. Atmospheric Environment, 2014,95(oct.):552-562.
[15]
周茹,朱君.东南亚生物质燃烧输送影响我国西南气溶胶辐射特性研究[J]. 中国环境科学, 2020,40(4):1429-1436. Zhou R, Zhu J. Study on the influence of transport of biomass burning materials from Southeast Asia on aerosol radiation effects in Southwest China[J]. China Environmental Science, 2020,40(4):1429-1436.
[16]
张玉洽,杨迎春,李杰,等.东南亚生物质燃烧对我国春季PM2.5质量浓度影响的数值模拟[J]. 环境科学研究, 2016,29(7):952-962. Zhang Y Q, Yang Y C, Li J, et al. Modeling the Impacts of Biomass Burning in Southeast Asia on PM2.5 over China in Spring[J]. Research of Environmental Sciences, 2016,29(7):952-962.
[17]
殷秀峰,康世昌,张强弓,等.青藏高原内陆大气污染物科学研究——以纳木错站为例[J]. 自然杂志, 2020,42(5):373-378. Yin X F, Kang S C, Zhang Q G, et al. Study of air pollutants in the inland Tibetan Plateau (Nam Co Station)[J]. Chinese Journal of Nature, 2020,42(5):373-378.
[18]
Winker D M, Vaughan M A, Omar A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. Journal of Atmospheric & Oceanic Technology, 2009,26(11):2310-2323.
[19]
Omar A H, Winker D M, Kittaka C, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric & Oceanic Technology, 2009,26(10):1994-2014.
[20]
贾瑞,刘玉芝,吴楚樵,等.2007~2017年中国沙尘气溶胶的三维分布特征及输送过程[J]. 中国沙漠, 2019,(6):108-117. Jia R, Liu Y Z, Wu C Q, et al. Three-dimensional distribution and transport process of dust aerosols over China from 2007 to 2017[J]. Journal of Desert Research, 2019,(6):108-117.
[21]
单晓丽.中南半岛生物质燃烧排放的跨界输送及对我国南部AOD影响的研究[D]. 济南:山东农业大学, 2016. Dan X L. Study on the Transboundary Transport of Biomass Burning Emissions over Indo-China and Its Influence to the Aerosol Optical Depth over Southern China[D]. Jinan:Shandong Agricultural University, 2016.
[22]
Rui Jia, Min Luo, Yuzhi Liu, et al. Anthropogenic aerosol pollution over the Eastern slope of the Tibetan Plateau[J]. Advances in Atmospheric Sciences, 2019,36(8):847-862.
[23]
艾泽,陈权亮.四川地区气溶胶光学厚度时空分布及其与气象因子的相关性分析[J]. 四川环境, 2019,38(4):79-86. Ai Z, Chen Q L. Temporal and apatial distribution of aerosol optical depth in Sichuan and its correlation with meteorological factors[J]. Sichuan Environment, 2019,38(4):79-86.
[24]
欧阳正午,廖婷婷,陈科艺,等.2014~2017年四川盆地与京津冀地区冬季空气停滞特征及大气质量改善评估对比分析[J]. 环境科学学报, 2019,39(7):2353-2361. Ou Yang Z W, Liao T T, Chen K Y, et al. Comparative analysis of winter air stagnation characteristics and air quality improvement assessment in Sichuan Basin and Beijing-Tianjin-Hebei Region from 2014 to 2017[J]. Acta Scientiae Circumstantiae, 2019,39(7):2353-2361.
[25]
郭晓梅,陈娟,赵天良,等.1961~2010年四川盆地霾气候特征及其影响因子[J]. 气象与环境学报, 2014,(6):102-109. Guo X M, Chen J, Zhao T L, et al. Climate characteristics of haze and its impacting factors from 1961 to 2010 in Sichuan basin[J]. Journal of Meteorology and Environment, 2014,30(6):100-107.
[26]
Yang Y, Liao H, Lou S. Increase in winter haze over eastern China in recent decades:Roles of variations in meteorological parameters and anthropogenic emissions[J]. Journal of Geophysical Research Atmospheres, 2016,121(21):13050-13065.
[27]
Zhu J, Xia X, Che H, et al. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma[J]. Atmos. Res., 2016,169:237-247.
[28]
张美根,徐永福,张仁健,等.东亚地区春季黑碳气溶胶源排放及其浓度分布[J]. 地球物理学报, 2003,48(1):46-51. Zhang M G, Xu Y F, Zhang R J, Emissions and concentration distributions of black carbon aerosol in East Asia during the springtime[J]. Chinese Journal Of Geophysics, 2003,48(1):46-51.
[29]
张国强,巨天珍,王勤花,等.宁夏吸收性气溶胶时空分布及其影响因素研究[J]. 中国环境科学, 2020,40(6):54-63. Zhang G Q, Ju T Z, Wang Q H, et al. Studying on spatial and temporal distribution of absorbent aerosols and its influencing factors in Ningxia[J]. China Environmental Science, 2020,40(6):54-63.
[30]
Kang L, Chen S, Huang J, et al. The spatial and temporal distributions of absorbing aerosols over East Asia[J]. Remote Sens., 2017,9(10):1050-1070.
[31]
张思,刘志红,佟洪金,等.基于遥感数据的秸秆焚烧源排放清单及时空分布特征[J]. 环境科学研究, 2019,32(4):627-635. Zhang S, Liu Z H, Tong H J, et al. Emission inventory of crop straw field burning and its temporal and spatial allocation based on remote sensing data[J]. Research of Environmental Sciences, 2019,32(4):627-635.
[32]
李宛鸿,范广洲.盛夏高原涡生成频数与初夏大气环流背景场的关系[J]. 西南大学学报(自然科学版), 2020,42(1):103-111. Li W H, Fan G Z. Relationship Betwen the frequency of Tibetan Plateau vortex generation in midsummer and the background field of atmospheric circulation in early Summer[J]. Journal of Southwest University, 2020,42(1):103-111.
[33]
J. Zhu, X. Xia, H. Che, et al. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma[J]. Atmospheric Research, 2016, 169:237-247.
[34]
Xu C, Ma Y M, You C, et al. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2015,15(20):15683-15710.
[35]
Kondo, Y. Impacts of biomass burning in Southeast Asia on ozone and reactive nitrogen over the western Pacific in spring[J]. Journal of Geophysical Research Atmospheres, 2004,109(D15):2890-2898.
[36]
Chn Q X, Huang C L, et al. Spatio-temporal distribution of major aerosol types over China based on MODIS products between 2008 and 2017[J]. Atmosphere (Basel), 2020,11(7):703-722.