Carbon and nitrogen contents and isotopic fractionation in different tissues of Ctenopharyngodon idellus and Anabarilius grahami in Fuxian Lake
GUO Wen1, HUANG Lin-pei1, WANG Ming-guo2,3, CHEN Zi-dong1, ZHAO Shuai-ying1, KONG Ling-yang1, CHEN Guang-jie1
1. Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China; 2. Yunnan Institute of Geological Sciences, Kunming 650501, China; 3. Geological Surveying and Mapping Institute of Yunnan Province, Kunming 650218, China
Abstract:Stable isotope signal and element composition of carbon and nitrogen in lake organisms have been widely applied to identify food sources and trophic structure of lake food webs. This study was conducted to evaluate ecological processes of elemental assimilation and stable isotope fractionation among different tissues by determining carbon and nitrogen contents and stable isotopes of 31 tissues of Ctenopharyngodon idellus and 17 tissues of Anabarilius grahami collected from Fuxian Lake. The results show that there are significant carbon isotopic fractionations among tissues, ranging from -20.66‰ to -11.62‰ for Ctenopharyngodon idellus and from -27.55‰ to -19.71‰ for Anabarilius grahami. Meanwhile, the nitrogen isotope fractionations are relatively moderate for both kinds of fish, with a maximum range of 1.88‰ and 4.60‰, respectively. The δ13C values show a significantly negative correlation with carbon contents of tissues. A 10% increase in carbon content results in a depletion of δ13C value by -1.83‰ for Ctenopharyngodon idellus and -1.35‰ for Anabarilius grahami, indicating that the absorption and synthesis of carbon in tissues are accompanied by significant isotopic fractionation. However, the δ15N values of different tissues may be affected by essential amino acids but not associated with nitrogen content; because a high content of essential amino acids in tissues often leads to a depletion of 15N. The isotopic fractionation coefficients between the dorsal muscle of Ctenopharyngodon idellus and intestinal content (Vallisneria natans) are 0.40‰ for carbon isotope and 2.66‰ for nitrogen isotope, suggesting carbon and nitrogen isotopic compositions of dorsal muscle are a reliable indicator of food source and trophic level. For fish without obvious dietary change over life time, the δ13C value of mucus and the δ15N value of scales (after correction) can be used as alternative indices for dorsal muscles. Obviously, the carbon and nitrogen contents and isotope fractionations of fish tissues can be used to identify the trophic structure and the pathway of trophic flow in lakes of southwest China. The alternative sampling of non-lethal tissues such as mucus and scales can be of great potential for effectively conservation of endangered fish.
Post D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions [J]. Ecology, 2002, 83(3): 703-718.
[2]
李斌, 徐丹丹, 王志坚, 等. 三峡库区蓄水175m对汉丰湖不同生物类群δ13C、δ15N值的影响[J]. 中国环境科学, 2013, 33(8): 1426-1432. Li B, Xu D D, Wang Z J, et al. Effects of the 175m impoundment (the first time) in the stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of different organisms in Hanfeng Lake from the Three Gorges Reservoir [J]. China Environmental Science, 2013, 33(8): 1426-1432.
[3]
徐军. 应用碳、氮稳定性同位素探讨淡水湖泊的食物网结构和营养级关系[D]. 武汉: 中国科学院研究生院(水生生物研究所), 2005. Xu J. Ecological studies on the food web structures and trophic relationships of freshwater lakes in China using stable carbon and nitrogen isotopes [D]. Wuhan: Chinese Academy of Sciences (Institute of Hydrobiology), 2005.
[4]
刘博, 陈琳琳, 李宝泉, 等. 碳氮稳定同位素比值在潮间带大型底栖动物组织间差异性研究[J]. 海洋学报, 2019, 41(4): 74-82. Liu B, Chen L L, Li B Q, et al. Carbon and nitrogen stable isotopes variations in different tissues of macrobenthos in the intertidal zone [J]. Haiyang Xuebao, 2019, 41(4): 74-82.
[5]
Focken U, Becker K. Metabolic fractionation of stable carbon isotopes implications of different proximate compositions for studies of the aquatic food webs using δ13C data [J]. Oecologia, 1998, 115(3): 337-343.
[6]
Cherel Y, Jaquemet S, Maglio A, et al. Differences in δ13C and δ15N values between feathers and blood of seabird chicks: implications for noninvasive isotopic investigations [J]. Marine Biology, 2014, 161: 229-237.
[7]
王玄, 江红星, 张亚楠. 稳定同位素分析在鸟类食性及营养级结构中的应用[J]. 生态学报, 2015, 35(16): 5556-5569. Wang X, Jiang H X, Zhang Y N. Application of stable isotope analyses to avian diets and trophic structure [J]. Acta Ecologica Sinica, 2015, 35(16): 5556-5569.
[8]
Montanari S, Amato G. Discrimination factors of carbon and nitrogen stable isotopes from diet to hair and scat in captive tigers (Pantheratigris) and snow leopards (Unciauncia)[J]. Rapid Commun Mass Spectrom, 2015, 29(11): 1062-1068.
[9]
James D R, Keith A H. Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox implications for dietary reconstruction [J]. Canadian Journal of Zoology, 2000, 78(5): 848-852.
[10]
张妙, 陈新军, 陈亚, 等. 黄颡鱼不同组织碳氮稳定同位素的周转与分馏研究[J]. 上海海洋大学学报, 2016, 25(6): 822-830. Zhang M, Chen X J, Chen Y, et al. Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of Pelteobagrus fulvidraco[J]. Journal of Shanghai Ocean University, 2016, 25(6): 822-830.
[11]
Post D M, Layman C A, Arrington D A, et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses [J]. Oecologia, 2007, 152(1): 179-189.
[12]
Wilson R P, Poe W E. Nitrogen metabolism in channel catfish, ictalurus punctatus. 3. relative pool sizes of free amino acids and related compounds in various tissues of the catfish [J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1974, 48(4): 545-556.
[13]
Sweeting C J, Barry J, Barnes C, et al. Effects of body size and environment on diet-tissue δ15N fractionation in fishes [J]. Journal of Experimental Marine Biology and Ecology, 2007, 340(1): 1-10.
[14]
Yan V, Banas D, Thomas M, et al. Stable isotope variability in tissues of the Eurasian perch Perca fluviatilis [J]. Comparative Biochemistry and Physiology, 2007, 148(3): 504-509.
[15]
Gaebler O H, Vitti T G, Vukmirovich R. Isotope effects in metabolism of 14N and 15N from unlabeled dietary proteins [J]. Canadian Journal of Biochemistry, 1966, 44(9): 1249-1257.
[16]
Pinnegar J K, Polunin N V C. Differential fractionation of δ13C and δ15N among fish tissues implications for the study of trophic interactions [J]. Funcyional Ecology, 1999, 13(2): 225-231.
[17]
Church M R, Ebersole J L, Rensmeyer K M, et al. Mucus: A new tissue fraction for rapid determination of fish diet switching using stable isotope analysis [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 66(1): 1-5.
[18]
Merwe N J V D. Carbon isotopes, photosynthesis, and archaeology: different pathways of photosynthesis cause characteristic changes in carbon isotope ratios that make possible the study of prehistoric human diets [J]. American Scientist, 1982, 70(6): 596-606.
[19]
中国科学院南京地理与湖泊研究所. 中国湖泊调查报告[M]. 北京: 科学出版社, 2019. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Chinese lakes survey report [M]. Beijing: Science Press, 2019.
[20]
戴全裕, 高礼存, 庄大栋. 云南抚仙湖的水生植被及其微量元素[J]. 海洋湖沼通报, 1983, (1): 52-58. Dai Q Y, Gao L C, Zhuang D D. The Vegetation and the trace elements of the aquatic plants in Yunnan Fuxian Lake [J]. Transactions of Oceanology and Limnology, 1983, (1): 52-58.
[21]
高弋明, 殷春雨, 刘霞, 等. 抚仙湖近60年来沉水植物群落变化趋势分析[J]. 湖泊科学, 2021, 33(4): 1209-1219. Gao G M, Yin C Y, Liu X, et al. Changes of submerged macrophytes community in Lake Fuxian since 1960s [J]. Journal of Lake Sciences, 2021, 33(4): 1209-1219.
[22]
杨君兴, 陈银瑞. 抚仙湖鱼类生物学和资源利用[M]. 昆明: 云南科技出版社, 1995. Yang J X, Chen Y R. The biology and resource utilization of the fishes of Fuxian lake [M]. Yunnan. Kunming: Yunnan Science and Technology Press. 1995.
[23]
孙健, 贺锋, 张义, 等. 草鱼对不同种类沉水植物的摄食研究[J]. 水生生物学报, 2015, 39(5): 997-1002. Sun J, He F, Zhang Y, et al. The feeding behavior of Grass Carp(Ctenopharyngodon idellus)on different types of submerged plants [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 997-1002.
[24]
Sweeting C J, Barry J T, Polunin N V C, et al. Effects of body size and environment on diet-tissue δ13C fractionation in fishes [J]. Journal of Experimental Marine Biology and Ecology, 2007, 352(1): 165–176.
[25]
陈耕, 刘忠义. 鳙鱼内脏蛋白质和脂肪的分析[J]. 食品研究与开发, 2009, 30(5): 112-114. Chen G, Liu Z Y. Analysis of protein and fat from bighead Carp(Aristichthys Nobilis)guts[J]. Food Research and Development. 2009, 30(5): 112-114.
[26]
Bodin N, Loc H F L, Hily C. Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues [J]. Journal of Experimental Marine Biology and Ecology, 2007, 341(2): 168-175.
[27]
王震, 田甲申, 李多慧, 等. 海湾扇贝碳氮稳定同位素的分馏系数和转化率研究[J]. 水产科学, 2018, 37(2): 145-151. Wang Z, Tian J S, Li D H, et al. Fractionation and turnover of carbon and nitrogen stable isotopes in tissues of Bay Scallop (Argopectenirradias)[J]. Fisheries Science, 2018, 37(2): 145-151.
[28]
Newsome S D, Clementz M T, Koch P L. Using stable isotope biogeochemistry to study marine mammal ecology [J]. Marine Mammal Science, 2010, 26(3): 509-572.
[29]
Krueger H W, Sullivan C H. Models for carbon isotope fractionation between diet and bone[J]. ACS Symposium, 1984, 258(5): 205-220.
[30]
朱小萍, 刘传祥, 杜敏梳, 等. 青鱼鳍骨、肋骨和鳃盖骨微观结构与力学性能的比较研究[J]. 实验力学, 2014, 29(3): 392-400. Zhu X P, Liu C X, Du M S, et al. A comparative study of microstructure and mechanical properties of black carp's fin, rib and opercular bones [J]. Journal of Experimental Mechanics, 2014, 29(3): 392-400.
[31]
郭洪壮, 胡月明, 王辉, 等. "四大家鱼"鱼骨钙的组成分析[J]. 食品与发酵工业, 2020, 46(18): 226-231. Guo H Z, Hu Y M, Wang H, et al. Composition of calcium in the bones of four major Chinese carps [J]. Food and Fermentation Industries, 2020, 46(18): 226-231.
[32]
范全城, 谢文霞, 王志强, 等. 互花米草碳、氮、磷化学计量特征及季节变化[J]. 环境科学与技术, 2019, 42(4): 12-19. Fan Q C, Xie W X, Wang Z Q, et al. Seasonal variations in C, N and P stoichiometry of Spartina aterniflora [J]. Environmental Science and Technology, 2019, 42(4): 12-19.
[33]
Hobson K A, Clark R G. Assessing avian diets using stable isotopes I turnover of 13C in tissues [J]. The Condor, 1992, 94(1): 181-188.
[34]
Minagawa M, Wada E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age [J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 1135-1140.
[35]
Macko S A, Lee W Y, Parker P L. Nitrogen and carbon isotope fractionation by two species of marine amphipods: Laboratory and field studies [J]. Journal of Experimental Marine Biology and Ecology, 1982, 63(2): 145-149.
[36]
Costantini M L, Carlino P, Calizza E, et al. The role of alien fish (the centrarchid Micropterus salmoides) in lake food webs highlighted by stable isotope analysis [J]. Freshwater Biology, 2018, 63(9): 1130-1142.
[37]
Deniro M J, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals [J]. Geochimica et Cosmochimica Acta, 1978, 42(5): 495-506.
[38]
Persic A, Roche H, Ramade F. Stable carbon and nitrogen isotope quantitative structural assessment of dominant species from the Vaccarès Lagoon trophic web (Camargue Biosphere Reserve, France) [J]. Estuarine, Coastal and Shelf Science, 2004, 60(2): 261-272.
[39]
郭凯迪, 张晓波, 刘培中, 等. 西洞庭湖沉水植物分布格局对环境因子及水文情势差异的响应[J]. 湖泊科学, 2020, 32(6): 1736-1748. Guo K D, Zhang X B, Liu P Z, et al. The response of submerged plants to different environmental factors and hydrologic regime in West Lake Dongting [J]. Journal of Lake Sciences, 2020, 32(6): 1736-1748.
[40]
梁红, 黄林培, 陈光杰, 等. 滇东湖泊水生植物和浮游生物碳、氮稳定同位素与元素组成特征[J]. 湖泊科学, 2018, 30(5): 1400-1412. Liang H, Huang L P, Chen G J, et al. Patterns of carbon and nitrogen stable isotopes and elemental composition of lake primary producers and zooplankton in Eastern Yunnan [J]. Journal of Lake Sciences, 2018, 30(5): 1400-1412.
[41]
Li L, Bonser S P, Lan Z, et al. Water depth affects reproductive allocation and reproductive allometry in the submerged macrophyte Vallisneria natans [J]. Scientific Reports, 2017, 7(1): 876-885.
[42]
王华, 逄勇, 刘申宝, 等. 沉水植物生长影响因子研究进展[J]. 生态学报, 2008, 28(8): 3958-3968. Wang H, Pang Y, Iiu S B, et al. Research progress on influencing of environmental factors on the growth of submersed macrophytes [J]. Acta Ecologica Sinica, 2008, 28(8): 3958-3968.
[43]
黄亮, 吴莹, 张经, 等. 长江中游若干湖泊水生植物体内C、N、P及δ13C分布[J]. 地球学报, 2003, (6): 515-518. Huang L, Wu Y, Zhang J, et al. Distribution of C, N, P and δ13C in aquatic plants of some lakes in the Middle Yangtze Valley [J]. Acta Geoscientica Sinica. 2003, (6): 515-518.
[44]
周温瑞, 徐军, 谢平. 太湖高等水生植物稳定碳、氮同位素特征[J]. 湖泊科学, 2016, 28(1): 163-169. Zhou W R, Xu J, Xie P. Carbon and nitrogen stable isotopes of macrophytes from Lake Taihu [J]. Journal of Lake Sciences, 2016, 28(1): 163-169.
[45]
王玉玉, 徐军, 雷光春. 鳙(Aristichthy nobilis)、鲢(Hypophthalmichthys molitrix)鱼鳞作为稳定同位素研究非致命采样替代物的有效性[J]. 湖泊科学, 2014, 26(6): 853-856. Wang Y Y, XU J, Lei G C. Scale tissue of bighead carp and silver carp as nonlethal surrogates for muscle tissues in freshwater food web studies using stable isotopes [J]. Journal of Lake Sciences, 2014, 26(6): 853-856.
[46]
Vollaire Y, Banas D, Thomas M, et al. Stable isotope variability in tissues of the Eurasian perch Percafluviatilis [J]. Comparative Biochemistry and Physiology, 2007, 148(3): 504-509.