1. Institute of Earth Environment, Chinese Academy of Sciences, State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Xi'an 710061, China; 2. CAS Center of Excellence in Quaternary Science and Global Change, Xi'an 710061, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:In total 132 surface soil samples were collected from Northeast China. The ground and homogenized soil was completely dissolved using mixed acids. Uranium was separated from the sample matrix by extraction chromatography using UTEVA resin, and uranium isotopes in the separated sample were then measured by a triple quadrupole Inductively Coupled Plasma Mass Spectrometry (ICP-MS/MS) to learn the level and distribution of 238U, 235U, 234U concentrations in surface soil of the study. The 234U in surface soil of this area was reported first time, and an obvious isotope fractionation of 234U was observed in some soil samples indicated by the increased 234U/238U ratios. The distribution of 235U/238U atomic ratios in these surface soil samples showed an obvious regional deposition of uranium derived from atmospheric nuclear weapon tests the windward slope of the mountain. Consequently, the level of 235U/238U atomic ratios in the surface soil in west site of Greater Khingan Mountain were higher than other places. The level of uranium isotopes in surface soil was comparable to the environmental background level in other places, indicating negligible impacts from human nuclear activities. The source analysis showed that uranium isotopes in surface soil were dominated by rock weathering, human industrial and agricultural activities also contributed moderately in some areas.
Skwarzec B, Boryło A, Struminska D. 234U and 238U isotopes in water and sediments of the southern Baltic[J]. Journal of Environmental Radioactivity, 2002,61:354-363.
[2]
景称心,孔秋梅,冯志刚.中国南方某铀尾矿库周缘土壤重金属污染研究[J]. 中国环境科学, 2020,40(1):338-349. Jing C X, Kong Q M, Feng Z G. Heavy metal pollution in a uranium mining and metallurgy area in South China[J]. China Environmental Science, 2020,40(1):338-349.
[3]
Bai J, Yao H, Fan F L, et al. Biosorption of uranium by chemically modified Rhodotorula glutinis[J]. Journal of Environmental Radioactivity, 2010,101(11):969-973.
[4]
Wang J J, He B H, Wei X Y, et al. Sorption of Uranyl Ions on TiO2:Effects of pH, contact time, ionic strength, temperature and HA[J]. Journal of Environmental Sciences, 2019,75:115-123.
[5]
Ellis-Akovali Y. Nuclear data sheets for A=234[J]. Nuclear Data Sheets, 1983,40(4):523-603.
[6]
Pourcelot L, Masson O, Renaud P, et al. Environmental consequences of uranium atmospheric releases from fuel cycle facility:Ⅱ. The atmospheric deposition of uranium and thorium on plants[J]. Journal of Environmental Radioactivity, 2015,141:1-7.
[7]
Fleischer R L, Raabe O G. Recoiling alpha-emitting nuclei. Mechanisms for uranium-series disequilibrium[J]. Geochimica Et Cosmochimica Acta, 1978,42(7):973-978.
[8]
曹龙生,杨亚新,张页,等.中国大陆主要省份土壤中天然放射性核素含量分布规律研究[J]. 东华理工大学学报(自然科学版), 2012, 35(2):167-172. Cao L S, Yang Y X, Zhang Y, et al. Distribution pattern of radionuclides in the soil of mainland China[J]. Journal of East China Institute of Technology(Natural Science), 2012,35(2):167-172.
[9]
Borylo A. Determination of uranium isotopes in environmental samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(1):621-631.
[10]
Merkel B, Hasche-Berger A. Uranium in the environment:Mining impact and consequences[M]. Germany:Springer-Verlag Berlin Heidelberg, 2006:57-69.
[11]
Meinrath A, Schneider P, Meinrath G. Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany[J]. Journal of Environmental Radioactivity, 2003,64(2/3):175-193.
[12]
侯小琳,王珂.微量铀的快速超热中子活化法测定[J]. 核技术, 1997,20(9):568-571. Hou X L, Wang K. Determination of trace uranium with fast epithermal neutron activation analysis[J]. Nuclear Techniques, 1997, 20(9):568-571.
[13]
El-Taher A. INAA and DNAA for uranium determination in geological samples from Egypt[J]. Applied Radiation & Isotopes, 2010,68(6):1189-1192.
[14]
中国环境监测总站.中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990:18. China National Environmental Monitoring Centre. Background value of soil element in China[M]. Peking:China Environmental Press, 1990:18.
[15]
Skwarzec B, Boryło A, Struminska D. Activity disequilibrium between 234U and 238U Isotopes in Southern Baltic[J]. Water, Air, and Soil Pollution, 2004,159(1):165-173.
[16]
Alamelu D, Aggarwal S K. Determination of 235U/238U Atom ratio in uranium samples using liquid scintillation counting (LSC)[J]. Talanta, 2009,77(3):991-994.
[17]
Carvalho F P, Oliveira J M. Uranium isotopes in the Balkan's environment and foods following the use of depleted uranium in the war[J]. Environment International, 2010,36(4):352-360.
[18]
Brennecka G A, Borg L E, Hutcheon I D, et al. Natural variations in uranium isotope ratios of uranium ore concentrates:Understanding the 238U/235U fractionation mechanism[J]. Earth & Planetary Science Letters, 2010,291(1-4):228-233.
[19]
Warneke T, Croudace I W, Warwick P E, et al. A new ground-level fallout record of uranium and plutonium isotopes for northern temperate latitudes[J]. Earth & Planetary Science Letters, 2002, 203(3/4):1047-1057.
[20]
Pettersson H B L, Holm E. Investigation of aerial dispersion of uranium isotopes from a nuclear fuel fabrication facility[J]. Waste Management, 1992,12(1):85-97.
[21]
Pourcelot L, Boulet B, Le Corre C, et al. Isotopic evidence of natural uranium and spent fuel uranium releases into the environment[J]. Journal of Environmental Monitoring Jem, 2011,13(2):355-361.
[22]
范煜坤.我国表土中129I的空间分布及129I年代方法学初探[D]. 北京:中国科学院大学, 2013:40-48. Fan Y K. Spatial distribution of 129I in Chinese surface soil and preliminary study on the 129I chronology[D]. Peking:University of Chinese Academy of Sciences, 2013:40-48.
[23]
鲁彤.中国内蒙古-东北地区陆生植物中129I和铀同位素分析及环境示踪[D]. 北京:中国科学院大学, 2018:29-52. Lu T. Investigation and Environmental tracing of 129I and uranium isotopes in terrestrial vegetation samples from Inner Mongolia and Northeast China[D]. Peking:University of Chinese Academy of Sciences, 2018:29-52.
[24]
Hirose K, Igarashi Y, Aoyama M, et al. Recent trends of plutonium fallout observed in Japan:plutonium as a proxy for desertification[J]. Journal of Environmental Monitoring Jem, 2003,5(2):302-307.
[25]
Zheng J, Togami K, Watanabe Y, et al. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident[J]. Scientific Reports, 2012,2(3):3041-3048.
[26]
Source and effects of ionizing radiation (2000). ANNEX C:Exposures to the public from man-made sources of radiation[R]. Vienna:United Nations Scientific Committee on the Effects of Atomic Radiation, 2000:158-176.
[27]
Sukhorukov F V, Gavshin V M, Malikova I N, et al. Cesium-137 in the environment of the Altay Region (Russia)[J]. Water Air & Soil Pollution, 2000,118(3/4):395-406.
[28]
Zhao X, Qiao J, Hou X L. Plutonium isotopes in Northern Xinjiang, China:Level, distribution, sources and their contributions[J]. Environmental Pollution, 2020,265:114929.
[29]
Dong Z, Kang S C, Qin X, et al. New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern tibetan plateau, China[J]. Science of the Total Environment, 2015,529:101-113.
[30]
Westgate J, Wania F. Model-based exploration of the drivers of mountain cold-trapping in soil[J]. Environmental Science Processes & Impacts, 2013,15(12):2220-2232.
[31]
Air Resources Laboratory. HYSPLIT model[EB/OL]. https://www.ready.noaa.gov/HYSPLIT.php.
[32]
刘铁庚.天然铀同位素的某些地球化学特征[J]. 地质地球化学, 1979,12:44-51. Liu T G. Some geochemical characteristics of natural uranium isotopes[J]. Earth & Environment, 1979,12:44-51.
[33]
Lee V, DePaolo D, Christensen J. Uranium-series comminution ages of continental sediments:Case study of a Pleistocene alluvial fan[J]. Earth and Planetary Science Letters, 2010,296:244-254.
[34]
Borylo A, Skwarzec B. Bioaccumulation of polonium (210Po) and uranium (234U, 238U) in plants around phosphogypsum waste heap in Wiślinka (northern Poland)[J]. Radiochimica Acta, 2011,99(11):719-731.
[35]
Mangini A, Sonntag C, Bertsch G, et al. Evidence for a higher natural uranium content in world rivers[J]. Nature, 1979,278:337-339.
[36]
Nriagu J, Nam D, Ayanwola T A, et al. High levels of uranium in groundwater of Ulaanbaatar, Mongolia[J]. Science of the Total Environment, 2012,414:722-726.
[37]
Favas P, Pratas J, Mitra S, et al. Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine[J]. Science of the Total Environment, 2016,568(10):350-68.
[38]
牟保磊.元素地球化学[M]. 北京:北京大学出版社, 1999:124-125. Mou B L. Elemental geochemistry[M]. Peking:Peking University Press, 1999:124-125.
[39]
中国地质调查局.地质图[EB/OL]. http://www.cgs.gov.cn. China Geological Survey. Geological map[EB/OL]. http://www.cgs.gov.cn.
[40]
黄文辉,唐修义.中国煤中的铀、钍和放射性核素[J]. 中国煤炭地质, 2002,14:55-63. Huang W H, Tang X Y. Uranium, thorium and radionuclides in Chinese coal[J]. Coal Geology of China:2002,14:55-63.
[41]
Tsikritzis L, Ganatsios S, Duliu O, et al. Natural and artificial radionuclides distribution in some lichens, mosses, and trees in the vicinity of lignite power plants from west Macedonia, Greece[J]. Journal of Trace and Microprobe Techniques, 2003,21(3):543-554.
[42]
Haribala, Hu B, Wang C, et al. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China[J]. Ecotoxicology & Environmental Safety, 2016, 130(8):185-192.
[43]
张钟先,田均良.中国黄土地区土壤中天然放射性元素的生物地球化学[J]. 土壤学报, 1995,32(4):353-361. Zhang Z X, Tian J L. Biogeochemistry of natural radioactive elements in soil in loess region of China[J]. Acta Pedologica Sinica, 1995, 32(4):353-361.
[44]
况润元,汪永进,张向华,等.石笋铀同位素组成对土壤环境变化的指示[J]. 科学通报, 2002,47(13):1022-1026. Kuang R Y, Wang Y J, Zhang X H, et al. The indication of uranium isotopic composition of stalagmites to soil environmental change[J]. Chinese Science Bulletin, 2002,47(13):1022-1026.
[45]
裴晶晶,胡南,张辉,等.铀尾矿中不同形态铀释放的影响因素及其相关性[J]. 中国环境科学, 2019,37(9):3073-3080. Pei J J, Hu N, Zhang H, et al. An analysis of influencing factors on the release of different species of uranium from uranium tailings and their correlation[J]. China Environmental Science, 2019,37(9):3073-3080.
[46]
杨俊诚,朱永懿,陈景坚,等.粉煤灰的农业利用及其环境放射性污染评价[J]. 核农学报, 1999,13(5):299-304. Yang J C, Zhu Y Y, Chen J J, et al. Agricultural utilization of coal ash and evaluation of environmental radioactive pollution[J]. Journal of Nuclear Agricultural Sciences, 1999,13(5):299-304.