1. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. Geotechnical Engineering Research Institute, Zhejiang University, Hangzhou 310058, China; 3. Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, Hangzhou 310058, China; 4. Research Center for High Gravity, Zhejiang University, Hangzhou 310058, China; 5. CECEP DADI(Hangzhou) Environmental Remediation Co., Ltd., Zhejiang University, Hangzhou 310016, China
Abstract:This study is to investigate the physicochemical properties for the fine fraction (particle size <15mm) of the excavated municipal solid wastes (MSWs) with fill ages ranging from 23 to 37a. The composition, physicochemical properties and leaching solution properties of the materials were measured and analyzed. The experimental results showed that the particle size ranges (2~15mm, 0.075~2mm and <0.075mm) for the materials account for 42.9%~53.9%, 40.9%~44.1% and 5.1%~13.0%, respectively. The materials can be classified as a fine-grained sand. With a increase of fill age, the characteristic particle size d50 and d10 decreased, the specific gravity increased greatly, and tended to be stable after 30 years. The organic matter content (18.1%~19.1%), the content of nitrogen, phosphorus and potassium, the pH of the leaching solution (7.26~8.30), and the electrical conductivity (1.08~2.51mS/cm) all met the standard of Organic media for greening. The contents of Cu, Zn, Cd, Cr and Ni in the materials exceeded the standards of Soil environmental quality Risk control standard for soil contamination of agricultural land, Planting soil for greening and Organic media for greening. The calculated value of Nemerow comprehensive pollution index was as high as 15.48~17.95, indicating the materials were heavily contaminated. It was found that the heavy metals concentrated in the fine-grained fraction with particle sizes less than 2mm. It was suggested that the fine fraction should be further screened into two parts with a particle size of 2~15mm and less than 2mm. For the part with particle size less than 2mm, the technology of microbial induced carbonate precipitation could be used to stabilize the contained heavy metals. The treated materials can be reused as a planting soil layer for landscaping, landfill closure and abandoned mine site reclamation.
郭亚丽,赵由才.生活垃圾填埋场陈垃圾基本特性及再利用[J].再生资源研究, 2004,(4):12-15. Guo Y L, Zhao Y C. Basic characteristics and recycling of aged refuse in landfill[J]. Recycling Res, 2004,(4):12-15.
[2]
陈云敏,刘晓成,徐文杰,等.填埋生活垃圾稳定化特征与可开采性分析:以我国第一代卫生填埋场为例[J].中国科学:技术科学, 2019, 49(2):199-211. Chen Y M, Liu X C, Xu Wen-jie,et al. Analysis on stabilization characteristics and exploitability of landfilled municipal solid waste:Case of a typical landfill in China[J]. Scientia Sinica Technologica,2019,49(2):199-211.
[3]
Parrodi J, Vollprecht D, Pomberger R. Characterization of fine fractions from landfill mining:a review of previous investigations[J]. Detritus, 2018,2(1):46-62.
[4]
袁京,杨帆,李国学,等.非正规填埋场矿化垃圾理化性质与资源化利用研究[J].中国环境科学, 2014,34(7):1811-1817. Yuan J, Yang F, Li G X, et al. Physicochemical properties and resource utilization of aged refuse in informal landfill. China Environmental Science, 2014,34(7):1811-1817.
[5]
白秀佳,张红玉,顾军,等.填埋场陈腐垃圾理化特性与资源化利用研究[J].环境工程, 2021,39(2):6. Bai X J, Zhang H Y, Gu J, et al. Physico-chemical properties and resource utilization of stale refuse in landfill[J]. Environmental Engineering, 2021,39(2):6.
[6]
Mönkäre T J, Palmroth M R T, Rintala J A. Characterization of fine fraction mined from two Finnish landfills[J]. Waste Management, 2016,47(1):34-39.
[7]
郭亚丽,赵由才,徐迪民.上海老港生活垃圾填埋场陈垃圾的基本特性研究[J].上海环境科学, 2002,(11):669-671. Guo Y L, Zhao Y C, Xu D M. Study on basie charaeteristies of aged refuse at Shang hai Lao gang Landfill[J]. Shang hai Environmental Seiences. 2002,(11):669-671.
[8]
赵由才,柴晓利,牛冬杰.矿化垃圾基本特性研究[J].同济大学学报(自然科学版), 2006,(10):1360-1364. Zhao Y C, Cai X L, Niu D J. Characteristics of aged refuse in closed refuse landfill in Shanghai[J]. Journal of TongJi University (Natural Science), 2006,(10):1360-1364.
[9]
Chai X, Shimaoka T, Cao X, et al. Characteristics and mobility of heavy metals in an MSW landfill:Implications in risk assessment and reclamation[J]. Journal of Hazardous Materials, 2007,144(1/2):485.
[10]
Kaartinen T, Kai S, Rintala J. Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining[J]. Journal of Cleaner Production, 2013,55(2):56-66.
[11]
Quaghebeur M, Laenen B, Geysen D, et al. Characterization of landfilled materials:screening of the enhanced landfill mining potential[J]. Journal of Cleaner Production, 2013,55:72-83.
[12]
胡骏嵩.老生活垃圾填埋场污染调查评价及开采利用技术方案研究——以荆门市老生活垃圾填埋场为例[D].武汉:华中科技大学, 2013. Hu J S. Study on pollution risk assessment and mining remediation of the old landfill——Take Jingmen first landfill for example[D]. Wuhan:Huazhong University of Science and Technology, 2013.
[13]
Zhou C B, Xu W Y, Gong Z, et al. Characteristics and fertilizer effects of soil-like materials from landfill mining[J]. CLEAN-Soil, Air, Water, 2015,43(6):940-947.
[14]
Jani Y, Kaczala F, Marchand C, et al. Characterisation of excavated fine fraction and waste composition from a Swedish landfill[J]. Waste Management&Research, 2016,34(12):1292-1299.
[15]
Kaczala F, Mehdinejad M H, Lääne A, et al. Leaching characteristics of the fine fraction from an excavated landfill:Physico-chemical characterization[J]. Journal of Material Cycles and Waste Management, 2017,19(1):294-304.
[16]
刘晓成.填埋生活垃圾稳定化特征及开采可行性研究[D].杭州:浙江大学, 2018. Liu X C. Study of stabilization characteristics and exploitability of landfilled municipal solid wastes[D]. Hangzhou:ZheJiang University, 2018.
[17]
中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2020. National Bureau of statistics of the people's Republic of China. Beijing:China Statistical Yearbook[M]. China Statistics Press, 2020.
[18]
GB/T 50123-2019土工试验方法标准[S]. GB/T 50123-2019 Standard for geotechnical testing method[S].
[19]
LY/T 1228-2015森林土壤氮的测定[S]. LY/T 1228-2015 Nitrogen determination methods of forest soils[S].
[20]
LY/T 1232-2015森林土壤磷的测定[S]. LY/T 1232-2015 Phosphorus determination methods of forest soils[S].
[21]
LY/T 1234-2015森林土壤钾的测定[S]. LY/T 1234-2015 Potassium determination methods of forest soils[S].
杨玉江.填埋场生活垃圾降解与稳定化过程研究[D].上海:同济大学, 2007. Yang Y J. Degradation and stabilizition process of refuse at landfill[D]. Shanghai:TongJi University, 2007.
[24]
GB50021-2001岩土工程勘察规范[S]. GB50021-2001 Code for investigation of geotechnical engineering[S].
[25]
CJT340-2016绿化种植土壤[S]. CJT340-2016 Planting soil for greening[S].
[26]
GBT 33891-2017绿化用有机基质[S]. GBT 33891-2017 Organic media for greening[S].
[27]
武燕,王琼,仲召亮,等.松嫩平原农田和防护林土壤物理性质差异研究[J].安徽农业科学, 2016,44(9):177-179. Wu Y, Wang Q, Zhong Z L, et al. Difference study of soil physical properties between shelterbelts and farmlands at Songnen plain[J]. Journal of Anhui Agri, 2016,44(9):177-179.
[28]
杨光蓉,陈历睿,林敦梅.土壤微塑料污染现状、来源、环境命运及生态效应[J].中国环境科学, 2021,41(1):353-365. Yang G R, Chen L R, Lin D M. Status, sources, environmental fate and ecological consequences of microplastic pollution in soil[J]. China Environmental Science, 2021,41(1):353-365.
[29]
王少一.固体废弃物的地球物理检测研究[D].兰州:兰州大学, 2012. Wang S Y. Geophysical detection of municipal[D]. Lanzhou:Lanzhou University, 2012.
[30]
GB8172-1987城镇垃圾农用控制标准[S]. GB8172-1987 Control standards for urban wastes for agricultural use[S].
[31]
Chandler A J, Eighmy T T, Hjelmar O, et al. Municipal solid waste incinerator residues[M]. Amsterdam, The Netherlands:Elsevier, 1997.
[32]
GB15618-2018土壤环境质量农用地土壤污染风险管控标准(试行)[S].GB15618-2018 Soil environmental quality Risk control standard for soil contamination of agricultural land[S].
[33]
常威.生活垃圾焚烧飞灰的水洗及资源化研究[D].杭州:浙江大学, 2016. Chang W. Study on the washing process and recycling of MISWI fiy ash.[D]. Hangzhou:Zhejiang University, 2016.
[34]
闫啸.垃圾填埋场的环境安全性评价与老陈垃圾资源化利用可行性探讨——以扬州市江都区生活垃圾处理场为例[D].扬州:扬州大学, 2014. Yan X. The environmental safety assessment of landfill and reclamation analysis of long landfill garbage——Jiangdu landfill in Yangzhou as an example[D]. Yangzhou:Yangzhou University, 2014.
[35]
陈璐.不同填埋龄生活垃圾理化特性及细菌多样性研究[D].青岛:青岛理工大学, 2019. Chen L. Physical and chemical properties and bacterial diversity of different landfill age refuse[D]. Qingdao:Qingdao University of Technology, 2019.
[36]
鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000. Bao S D. Agrochemical analysis of soil[M]. Beijing:China Agriculture Press, 2000.
[37]
GB 3838-2002地表水环境质量标准[S]. GB 3838-2002 Environmental quality standards for surface water[S].
[38]
蒲昌英,刘昱昊.土壤团聚体中重金属及有机质的分布[J].科学技术创新, 2018,(13):19-20. Pu C Y, Liu Y H. Distribution of heavy metals and organic matter in soil aggregates[J]. Scientific and Technological Innovation, 2018,(13):19-20.
[39]
吴婷.铅污染不同粒径土壤重金属地球化学行为及其植物转运[D].西安:陕西师范大学, 2018. Wu T. Geochemical behavior and plant transport of heavy metals in soils contaminated by lead with different particle sizes[D]. Xi'an:ShanXi Normal University, 2018.
[40]
Achal V, Pan X, Zhang D. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation[J]. Ecological Engineering, 2011,37(10):1601-1605.