Degradation of chlorophenolic pollutants in Fe3O4-nZVI Fenton-like system
ZHONG Jin-kui1,2, LI Wen-qing1, XIE Ya-rui1, LI Jing1, WEI Jia-he1
1. School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. Key Laboratory of Yellow River Water Environment of Gansu Province, Lanzhou 730070, China
Abstract:The ferriferrous oxide supported nano zero-valent iron (Fe3O4-nZVI) was prepared by co-precipitation and liquid phase reduction method, and used as heterogeneous catalysts with H2O2 of Fenton-like systems to degrade chlorophenols (CPs) in wastewater, such as p-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP). The characterisation results of SEM, EDS, XPS, XRD and VSM showed that Fe3O4-nZVI was a nanoscale magnetic composite that could be recycled by magnetic recovery and could promote the circulation of Fe2+ and Fe3+ and increase the yield of HO·. The fitting parameters of kinetics showed that the degradation process of three kinds of CPs in Fe3O4-nZVI Fenton-like system fitted the pseudo-first-order kinetics model (R2>0.9). Under the optimization conditions, which were reaction temperature 25℃, Fe3O4:nZVI=1:1 (mol:mol), pH=3, H2O2 15mmol/L, CPs 40mg/L, and Fe3O4-nZVI 0.6g/L, the degradation rates of 4-CP, 2,4-DCP and 2,4,6-TCP by Fe3O4-nZVI Fenton-like systems were 96.28%, 98.77% and 98.03%, respectively. The degradation rates of three kinds of CPs were in the order of k4-CP>k2,4-DCP>k2,4,6-TCP. The degradation rates of CPs decreased with the increase of chlorine atoms on the benzene ring. The quenching experiments and mass spectrometry results indicated that HO· oxidation and substitution dechlorination played a critical role on degrading CPs.
Sheikh Z A, Singh Y, Singh P K, et al. Intelligent and secure framework for critical infrastructure (CPS):Current trends, challenges, and future scope [J]. Computer Communications, 2022,193:302-331.
[2]
陆勇泽,朱明超,李娜.纳米零价铁改性膜强化厌氧生物处理氯酚废水[J]. 中国环境科学, 2021,41(12):5664-5672. Lu Y Z, Zhu M C, Li N. Nano zero-valent iron modified membrane in an anaerobic biological system for enhanced chlorophenol-contained wastewater treatment [J]. China Environmental Science, 2021,41(12):5664-5672.
[3]
刘霞,樊金红. EDDS强化Fe0-Al0体系降解废水中4-氯酚的性能和机理[J]. 中国环境科学, 2018,38(5):1704-1711. Liu X, Fan J H. Enhanced bimetallic Fe0-Al0system by EDDS for degradation of aqueous 4-CP [J]. China Environmental Science, 2018, 38(5):1704-1711.
[4]
Huang Z Z, Chen G Q, Zeng G M, et al. Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium [J]. Journal of Hazardous Materials, 2017,321:37-46.
[5]
Pedroza A M, Mosqueda R, Alonso-Vante N, et al. Sequential treatment via trametes versicolor and UV/TiO2/RuxSey to reduce contaminants in waste water resulting from the bleaching process during paper production [J]. Chemosphere, 2007,67(4):793-801.
[6]
Hamidon T S, Hussin M H. Improved p-chlorophenol adsorption onto copper-modified cellulose nanocrystal-based hydrogel spheres [J]. International Journal of Biological Macromolecules, 2023,233:123535.
[7]
黄雪征,张永祥,张大胜,等.石墨烯负载纳米铁镍复合材料的制备、表征及对2,4-二氯酚的去除[J]. 中国环境科学, doi:10.19674/j. cnki.issn1000-6923.20230814.001. Huang X Z, Zhang Y X, Zhang D S, et al. Fabrication and characterization of Fe/Ni nanoparticles supported by reduced graphene oxide for 2,4-dichlorophenol removal [J]. China Environmental Science:doi:10.19674/j.cnki.issn1000-6923.20230814.001.
[8]
钟少芬,莫健文,李阳苹,等.粉末活性炭对水中氯酚的吸附[J]. 环境工程学报, 2016,10(6):2927-2932. Zhong S F, Mo J W, Li Y P, et al. Adsorption of chlorophenols in water by powdered activated carbon [J]. Chinese Journal of Environmental Engineering, 2016,10(6):2927-2932.
[9]
Duan Z H, Zhang W H, Lu M W, et al. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol [J]. Carbon, 2020,167:351-363.
[10]
Lin H, Guan W Q, Xiao Y B, et al. Degradation mechanisms of 2-chlorophenol by acinetobacter sp.:exploring cellular membrane structure, intra-and extracellular components, and transcriptomic analysis [J]. Journal of Environmental Chemical Engineering, 2023, 11(3):109865.
[11]
张永祥,高继民,王然,等.释氧-好氧微生物柱降解水中2,4-二氯酚的实验运行效果[J]. 水处理技术, 2014,40(5):63-65,69. Zhang Y X, Gao J M, Wang R, et al. Experimental operation effect of degrading 2,4-dichlorophenol in water by oxygen-releasing aerobic microbial column [J]. Technnology of Water Teratment 2014,40(5):63-65,69.
[12]
Fernandes A R, Vetter W, Dirks C, et al. Determination of chlorinated paraffins (CPs):Analytical conundrums and the pressing need for reliable and relevant standards [J]. Chemosphere, 2022,286:131878.
[13]
Hunge Y M, Yadav A A, Kang S-W, et al. Facile synthesis of multitasking composite of silver nanoparticle with zinc oxide for 4-nitrophenol reduction, photocatalytic hydrogen production, and 4-chlorophenol degradation [J]. Journal of Alloys and Compounds, 2022,928:167133.
[14]
Hadi S, Taheri E, Amin M M, et al. Advanced oxidation of 4-chlorophenol via combined pulsed light and sulfate radicals methods:Effect of co-existing anions [J]. Journal of Environmental Management, 2021,291:112595.
[15]
安琦,刘建广.基于羟基自由基或硫酸根自由基的高级氧化技术中溴酸盐形成与控制研究进展[J]. 净水技术, 2021,40(12):5-11,31. An Q, Liu J G. Research progress of bromate formation and control in AOPs based on hydroxyl radical or sulfate radical [J]. Water Purification Technology, 2021,40(12):5-11,31.
[16]
邬长友.紫外/过硫酸盐预氧化强化混凝同步除藻和三氯酚[J]. 中国给水排水, 2023,39(1):45-48. Wu C Y. UV/Persulfate pre-oxidation enhanced coagulation for simultaneous removal of algae and trichlorophenol [J]. China Water & Wastewater 2023,39(1):45-48.
[17]
封帆,高迎新,张昱,等.Fenton氧化4-氯酚降解机制研究[J]. 环境化学, 2011,30(11):1889-1893. Feng F, Gao Y X, Zhang Y, et al. Decomposition mechanisms of 4-chlorophenol by Fenton oxidation [J]. Environmental Chemistry, 2011,30(11):1889-1893.
[18]
盛钎,魏建建,吴江南,等.催化臭氧化3-氯酚中生物毒性的变化[J]. 环境化学, 2021,40(10):3180-3189. Sheng Q, Wei J J, Wu J N, et al. Study on the biological toxicity evolution during catalytic ozonation of 3-chlorophenol [J]. Environmental Chemistry, 2021,40(10):3180-3189.
[19]
Wang L Y, Luo D, Yang J P, et al. Metal-organic frameworks-derived catalysts for contaminant degradation in persulfate-based advanced oxidation processes [J]. Journal of Cleaner Production, 2022,375:134118.
[20]
Dong H R, Deng J M, Xie Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution [J]. Journal of Hazardous Materials, 2017,332:79-86.
[21]
Pang H W, Liu L J, Bai Z, et al. Fabrication of sulfide nanoscale zero-valent iron and heterogeneous Fenton-like degradation of 2,4-Dichlorophenol [J]. Separation and Purification Technology, 2022,285:120408.
[22]
Xie J T, Lei C, Chen W Q, et al. Catalytic properties of transition metals modified nanoscale zero-valent iron for simultaneous removal of 4-chlorophenol and Cr(VI):Efficacy, descriptor and reductive mechanisms [J]. Journal of Hazardous Materials, 2021,403:123827.
[23]
张永祥,常杉,李飞,等.稳定型纳米零价铁去除地下水中2,4-二氯苯酚[J]. 环境科学, 2017,38(6):2385-2392. Zhang Y X, Chang S, Li F, et al. Removal of 2,4-dichlorophenol in underground water by stabilized nano zero valent iron [J]. Environmental Science, 2017,38(6):2385-2392.
[24]
汪茜,阮霞,刘红,等.镍质量比对纳米Fe/Ni还原水中2,4-二氯酚的影响[J]. 环境科学与技术, 2014,37(12):57-61. Wang Q, Ruan X, Liu H, et al. Effects of mass ratio of Ni on the reduction of 2,4-dichlorophenol by nanoscale Ni/Fe [J]. Environmental Science & Technology, 2014,37(12):57-61.
[25]
李素君,卫建军,余江,等.羧甲基纤维素包覆纳米铁的制备及其分散性研究[J]. 环境科学与技术, 2010,33(9):15-18. Li S J, Wei J J, Yu J, et al. Preparation and dispersity of nanoiron particles coated with carboxymethyl cellulose [J]. Environmental Science & Technology, 2010,33(9):15-18.
[26]
Teng H, Xu S, Zhao C, et al. Removal of hexavalent chromium from aqueous solutions by sodium dodecyl sulfate stabilized nano zero-valent iron:A kinetics, equilibrium, thermodynamics study [J]. Separation Science and Technology, 2013,48(11):1729-1737.
[27]
黄超,余兵,李任超,等.有机膨润土负载纳米零价铁还原-类芬顿氧化降解2,4-二氯苯酚[J]. 环境工程学报, 2015,9(8):3643-3649. Huang C, Yu B, Li R C, et al. Combination of reduction and heterogeneous Fenton oxidation for removal of 2,4-DCP from aqueous solution using organobentonite-nanoscale zerovalent iron [J]. Chinese Journal of Environmental Engineering, 2015,9(8):3643-3649.
[28]
Li S, Tang J C, Liu Q L, et al. A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol [J]. Environment International, 2020,138:105639.
[29]
谢欣卓,钟金魁,李静,等.Fe3O4-nZVI类Fenton法降解水中磺胺甲恶唑[J]. 中国环境科学, 2022,42(7):3103-3111. Xie X Z, Zhong J K, Li J, et al. Degradation of sulfamethoxazole in water by Fenton-like process using ferriferrous oxide supported nanometer zero-valent iron [J]. China Environmental Science, 2022, 42(7):3103-3111.
[30]
王正新. Fe3O4负载纳米零价铁强化类Fenton降解水中2,4-二氯苯酚[D]. 兰州:兰州交通大学, 2020. Wang Z X. Enhanced Fenton-like oxidation of 2,4-dichlorophenol in aqueous solution by nano-zero-valent iron supported on magnetic Fe3O4 nanoparticles [D]. Lanzhou:Lanzhou Jiaotong University, 2020.
[31]
Huang R X, Fang Z Q, Yan X M, et al. Heterogeneous sono-fenton catalytic degradation of bisphenol a by Fe3O4 magnetic nanoparticles under neutral condition [J]. Chemical Engineering Journal, 2012,197:242-249.
[32]
Xu J, Tan L S, Baig S A, et al. Dechlorination of 2,4-dichlorophenol by nanoscale magnetic Pd/Fe particles:Effects of pH, temperature, common dissolved ions and humic acid [J]. Chemical Engineering Journal, 2013,231:26-35.
[33]
Tan L, Lu S Y, Fang Z Q, et al. Enhanced reductive debromination and subsequent oxidative ring-opening of decabromodiphenyl ether by integrated catalyst of nZVI supported on magnetic Fe3O4 nanoparticles [J]. Applied Catalysis B:Environmental, 2017,200:200-210.
[34]
孙笑笑.负载型纳米零价铁类Fenton法对水中对氯苯酚的去除[D]. 兰州:兰州交通大学, 2020. Sun X X. Removal of p-chlorophenol in water by supported nano-zero-valent iron Fenton-like method [D]. Lanzhou:Lanzhou Jiaotong University, 2020.
[35]
王安蓉,李建,王跃.经Fe(NO3)3处理的Fe3O4纳米微粒分析[J]. 分析测试学报, 2006,25(6):35-38. Wang A R, Li J, Wang Y. Analysis of Fe3O4 nanoparticles treated with Fe(NO3)3 [J]. Journal of Instrumental Analysis, 2006,25(6):35-38.
[36]
郑锦丽,葛红光,马书婷,等.核壳型磁性纳米复合材料Fe3O4@SiO2@mTiO2@Pt的制备及催化性能[J]. 功能材料, 2022, 53(1):1064-1071,1076. Zheng J L, Ge H G, Ma S T, et al. Preparation and catalytic properties of core-shell magnetic nanocomposites Fe3O4@SiO2@mTiO2@Pt [J]. Journal of Functional Materials, 2022,53(1):1064-1071,1076.
[37]
Bashir A, Pandith A H, Qureashi A, et al. Catalytic propensity of biochar decorated with core-shell nZVI@Fe3O4:A sustainable photo-Fenton catalysis of methylene blue dye and reduction of 4-nitrophenol [J]. Journal of Environmental Chemical Engineering, 2022,10(3):107401.
[38]
刘凯,庞志华,李小明,等.有机蒙脱石负载纳米铁去除4-氯酚的研究[J]. 环境科学学报, 2011,31(12):2616-2623. Liu K, Pang Z H, Li X M, et al. Investigation on the removal of 4-chlorophenol using nanoscale zero-valent iron supported on organomontmorillonite [J]. Acta Scientiae Circumstantia, 2011,31(12):2616-2623.
[39]
Van N T T, Phan A N, Cuong V C, et al. Enhanced heterogeneous Fenton degradation of p-nitrophenol by Fe3O4 nanoparticles decorated cellulose aerogel from banana stem [J]. Environmental Technology & Innovation, 2023,30:103041.
[40]
章琴琴,丁世敏,封享华,等.Fenton法降解邻苯二甲酸二乙酯的动力学特征及其影响因素研究[J]. 环境化学, 2020,39(11):3009-3016. Zhang Q Q, Ding S M, Feng X H, et al. Study on the degradation kinetic characteristics and influencing factors of diethyl phthalate by Fenton treatment [J]. Environmental Chemistry, 2020,39(11):3009-3016.
[41]
马溢阳.改性石墨烯负载零价铁去除水体中两种典型氯代有机物的研究[D]. 北京:中国地质大学, 2019. Ma Y Y. Removal of two typical chlorinated organics from water by zero-valent iron supported on modified graphene [D]. Beijing:China University of Geosciences, 2019.
[42]
冯丽,葛小鹏,王东升,等.pH值对纳米零价铁吸附降解2,4-二氯苯酚的影响[J]. 环境科学, 2012,33(1):94-103. Feng L, Ge X P, Wang D S, et al. Effects of pH value on the adsorption and degradation of 2,4-DCP by nanoscale zero-valent iron [J]. Environmental Science, 2012,33(1):94-103.
[43]
Zhang X, Chen Z, Li X M, et al. Promoted electron transfer in Fe2+/Fe3+ co-doped BiVO4/Ag3PO4S-scheme heterojunction for efficient photo-Fenton oxidation of antibiotics [J]. Separation and Purification Technology, 2023,310:123116.
[44]
Qin X, Wang K X, Cao P K, et al. Highly efficient electro-Fenton process on hollow porous carbon spheres enabled by enhanced H2O2 production and Fe2+ regeneration [J]. Journal of Hazardous Materials, 2023,446:130664.
[45]
贺京哲.不同氯酚对催化剂氧化降解的响应及机制[D]. 杨凌:西北农林科技大学, 2017. He J Z. Mechanism and response to oxidative degradation of chlorophenols over catalys [D]. Yangling:Northwest A & F University, 2017.
[46]
周子英.取代基对苯环活性的影响[J]. 内蒙古石油化工, 2003,29(2):18-19,17. Zhou Z Y. Effect of substituents on benzene ring activity [J]. Inner Mongolia Petrochemical Industry, 2003,29(2):18-19,17.
[47]
杨鑫宇,吴杰,解帅,等.纳米级Pd/Fe@SiO2复合颗粒对2,4-DCP的还原脱氯研究[J]. 环境科学学报, 2019,39(11):3794-3801. Yang X Y, Wu J, Xie S, et al. Reductive dechlorination of 2,4-DCP by Pd/Fe@SiO2nanocomposites [J]. Acta Scientiae Circumstantiae, 2019, 39(11):3794-3801.
[48]
Fei W H, Sheng Z Y, Yan S, et al. Fenton-like degradation of 2,4-dichlorophenol using calcium peroxide particles:performance and mechanisms [J]. RSC Advances, 2017,7(8):4563-4576.
[49]
张玥.非均相类芬顿催化剂降解废水中氯酚类化合物的研究[D]. 兰州:兰州大学, 2022. Zhang Y. Degradation of chlorophenols in wastewater by heterogeneous Fenton-like catalysts [D]. Lanzhou:Lanzhou University, 2022.
[50]
Kralik P, Kusic H, Koprivanac N, et al. Degradation of chlorinated hydrocarbons by UV/H2O2:The application of experimental design and kinetic modeling approach [J]. Chemical Engineering Journal, 2010,158(2):154-166.
[51]
Karci A, Arslan-Alaton I, Olmez-Hanci T, et al. Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes:Oxidation products and toxicity evolution [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2012,230(1):65-73.
[52]
Gomez M, Murcia M D, Gomez E, et al. Enhancement of 4-chlorophenol photodegradation with KrCl excimer UV lamp by adding hydrogen peroxide [J]. Separation Science & Technology, 2010,45(11):1603-1609.