Abstract:According to the panel data of selected 30 provinces in China from 2001 to 2021, this paper analyzes the changes and sources of total carbon factor productivity in China's thermal power industry based on the SuperSBM-GML model. And then the threshold model was used to test the nonlinear threshold effect of foreign investment level and R&D intensity on carbon total factor productivity in terms of low-carbon technological progress, energy saving and emission reduction efficiency. The results show that the total carbon factor productivity of China's thermal power industry improved by 1.3% in general, of which low-carbon technological progress was the main source of its improvement. The results of the eight economic zones show that the average efficiency value of carbon total factor productivity in developed economic zones (1.015) was higher than that in less developed economic zones (1.006). At the same time, the catching-up effect of low-carbon technological progress in the developed economic zones was also significantly higher than that in the less developed ones. However, the improvement of energy conservation and emission reduction efficiency was more significant in less developed economic zones. The test of threshold effect of foreign investment level manifests that lower foreign investment level inhibits the positive promotion effect between low-carbon technological progress and carbon total factor productivity; the test of threshold effect of R&D intensity demonstrates that the improvement of energy saving and emission reduction efficiency had a significant positive effect on carbon total factor productivity with the increase of R&D intensity.
高文静, 杨舒怡. 火电行业碳全要素生产率、技术进步与效率追赶[J]. 中国环境科学, 2023, 43(11): 6172-6182.
GAO Wen-jing, YANG Shu-yi. Carbon total factor productivity, technological progress and efficient catching up in the thermal power sector. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(11): 6172-6182.
刘晓龙,崔磊磊,李彬,等.碳中和目标下中国能源高质量发展路径研究[J]. 北京理工大学学报(社会科学版), 2021,23(3):1-8. Liu X L, Cui L L, Li B, et al. Study on the path of China's energy quality development under the goal of carbon neutrality [J]. Journal of Beijing University of Technology (Social Science Edition), 2021,23(3):1-8.
[2]
Repetto R, Rothman D, Faeth P, et al. Has environmental protection really reduced productivity growth? [J]. Challenge, 1997,40(1):46-57.
[3]
王兵,吴延瑞,颜鹏飞.环境管制与全要素生产率增长:APEC的实证研究[J]. 经济研究, 2008,(5):19-32. Wang B, Wu Y R, Yan P F. Environmental regulation and total factor productivity growth:An empirical study of APEC [J]. Economic Research Journal, 2008,(5):19-32.
[4]
熊爱华,丁友强,胡玉凤.低碳门槛下绿色创新补贴对全要素生产率的影响[J]. 资源科学, 2020,42(11):2184-219. Xiong A H, Ding Y Q, Hu Y F. Impact of low-carbon subsidies and green innovation on total factor productivity in view of the threshold effect of carbon emission reduction [J]. Resources Science, 2020,42(11):2184-2195.
[5]
施建刚,段锴丰,吴光东,等.碳排放约束下长三角地区城乡融合发展效率[J]. 经济地理, 2021,41(6):57-67. Shi J G, Duan K F, Wu G D, et al. Efficiency of urban-rural integration development in the Yangtze River Delta under the background of carbon emission constraint [J]. Economic Geography, 2021,41(6):57-67.
[6]
陈诗一.中国的绿色工业革命:基于环境全要素生产率视角的解释(1980~2008) [J]. 经济研究, 2010,45(11):21-34,58. Chen S Y. China's green industrial revolution:An explanation from the perspective of environmental total factor productivity (1980~2008) [J]. Economic Research Journal, 2010,45(11):21-34,58.
[7]
李小平,余东升,余娟娟.异质性环境规制对碳生产率的空间溢出效应——基于空间杜宾模型[J]. 中国软科学, 2020,(4):82-96. Li X P, Yu D S, Yu J J. Spatial spillover effect of heterogeneous environmental regulation on carbon productivity:Based on spatial Dubin model [J]. China Soft Science, 2020,(4):82-96.
[8]
Lin B, Du K. Modeling the dynamics of carbon emission performance in China:A parametric Malmquist index approach [J]. Energy Economics, 2015,49:550-557.
[9]
Wang X Z, Wang S, Zhang X X. Heterogeneity and influence factors of carbon productivity:Evidence from Chinese manufacturing enterprises [J]. Journal of Cleaner Production, 2023,404:136938.
[10]
滕泽伟,胡宗彪,蒋西艳.中国服务业碳生产率变动的差异及收敛性研究[J]. 数量经济技术经济研究, 2017,34(3):78-94. Teng Z W, Hu Z B, Jiang X Y. Differences and convergence of carbon productivity changes in China's service sector [J]. The Journal of Quantitative & Technical Economics, 2017,34(3):78-94.
[11]
杨莉莎,朱俊鹏,贾智杰.中国碳减排实现的影响因素和当前挑战——基于技术进步的视角[J]. 经济研究, 2019,54(11):118-132. Yang L S, Zhu J P, Jia Z J. Influencing factors and current challenges of carbon emission reduction achievement in China-based on the perspective of technological progress [J]. Economic Research, 2019, 54(11):118-132.
[12]
Zhou P, Ang B W, Han J Y. Total factor carbon emission performance:A Malmquist index analysis [J]. Energy Economics, 2010,32(1):194-201.
[13]
Bai C, Du K, Yu Y, et al. Understanding the trend of total factor carbon productivity in the world:Insights from convergence analysis [J]. Energy Economics, 2019,81:698-708.
[14]
Zhang N, Choi Y. A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea [J]. Energy Policy, 2013,62:324-332.
[15]
周小亮,宋立.中国工业低碳转型:现实分析与政策思考[J]. 数量经济技术经济研究, 2022,39(8):22-41. Zhou X L, Song L. Low-carbon industrial transformation in China:Realistic analysis and policy thinking [J]. The Journal of Quantitative & Technical Economics, 2022,39(8):22-41.
[16]
Liu X, Zhang X. Industrial agglomeration, technological innovation and carbon productivity:Evidence from China [J]. Resources, Conservation and Recycling, 2021,166:105330.
[17]
Niu M, Tan X, Guo J, et al. Driving factors and growth potential of provincial carbon productivity in China [J]. Sustainability, Multidisciplinary Digital Publishing Institute, 2021,13(17):9759.
[18]
Long R, Gan X, Chen H, et al. Spatial econometric analysis of foreign direct investment and carbon productivity in China:Two-tier moderating roles of industrialization development [J]. Resources, Conservation and Recycling, 2020,155:104677.
[19]
柳亚琴,孙薇,朱治双.碳市场对能源结构低碳转型的影响及作用路径[J]. 中国环境科学, 2022,42(9):4369-4379. Liu Y Q, Sun W, Zhu Z S. The impact of carbon market on the low carbon transition of energy structure and its path of action [J]. China Environmental Science, 2022,42(9):4369-4379.
[20]
任晓松,马茜,刘宇佳,等.碳交易政策对工业碳生产率的影响及传导机制[J]. 中国环境科学, 2021,41(11):5427-5437. Ren X S, Ma X, Liu Y J, et al. Impact of carbon trading policy on industrial carbon productivity and transmission mechanism [J]. China Environmental Science, 2021,41(11):5427-5437.
[21]
唐保庆.国内R&D投入、国际R&D溢出与全要素生产率[J]. 世界经济研究, 2009,(9):69-75,89. Tang B Q. Domestic R&D input, international R&D spillover and total factor productivity [J]. Journal of World Economy, 2009,(9):69-75,89.
[22]
邵帅,杨莉莉,黄涛.能源回弹效应的理论模型与中国经验[J]. 经济研究, 2013,48(2):96-109. Shao S, Yang L L, Huang T. Theoretical model of energy rebound effect and Chinese experience [J]. Economic Research Journal, 2013, 48(2):96-109.
[23]
赵皋,费能云.外商直接投资、自主创新与碳生产率增长[J]. 资源开发与市场, 2014,30(2):187-190. Zhao G, Fei N Y. Foreign direct investment, independent innovation and carbon productivity growth [J]. Resources Development and Market, 2014,30(2):187-190.
[24]
唐未兵,傅元海,王展祥.技术创新、技术引进与经济增长方式转变[J]. 经济研究, 2014,49(7):31-43. Tang W B, Fu Y H, Wang Z X. Technological innovation, technology introduction and transformation of economic growth mode [J]. Economic Research Journal, 2014,49(7):31-43.
[25]
白雪洁,王晓林.工业化水平如何影响FDI的碳生产率[J]. 山西财经大学学报, 2020,42(5):1-14. Bai X J, Wang X L. How does industrialization affect the carbon productivity of FDI [J]. Journal of Shanxi University of Finance and Economics, 2020,42(5):1-14.
[26]
刘传江,胡威.外商直接投资提升了中国的碳生产率吗?——基于空间面板Durbin模型的经验分析[J]. 世界经济研究, 2016,(1):99-109,137. Liu C J, Hu W. Does FDI improve China's carbon productivity?-Empirical analysis based on Durbin Model of space panel [J]. Journal of World Economy, 2016,(1):99-109,137.
[27]
Yan D, Lei Y, Li L, et al. Carbon emission efficiency and spatial clustering analyses in China's thermal power industry:Evidence from the provincial level [J]. Journal of Cleaner Production, 2017,156:518-527.
[28]
Meng M, Qu D. Understanding the green energy efficiencies of provinces in China:A Super-SBM and GML analysis [J]. Energy, 2022,239:121912.
[29]
Duan N, Guo J P, Xie B C. Is there a difference between the energy and CO2emission performance for China's thermal power industry? A bootstrapped directional distance function approach [J]. Applied Energy, 2016,162:1552-1563.
[30]
张宁.碳全要素生产率、低碳技术创新和节能减排效率追赶——来自中国火力发电企业的证据[J]. 经济研究, 2022,57(2):158-174. Zhang N. Carbon total factor productivity, low-carbon technology innovation and catch-up of energy conservation and emission reduction efficiency:Evidence from Chinese thermal power generation enterprises [J]. Economic Research Journal, 2022,57(2):158-174.
[31]
Tone K. A slacks-based measure of efficiency in data envelopment analysis [J]. European Journal of Operational Research, 2001,130(3):498-509.
[32]
Tone K, Sahoo B K. Degree of scale economies and congestion:A unified DEA approach [J]. European Journal of Operational Research, 2004,158(3):755-772.
[33]
Oh D. A global Malmquist-Luenberger productivity index [J]. Journal of Productivity Analysis, 2010,34(3):183-197.
[34]
Fukuyama H, Weber W L. A directional slacks-based measure of technical inefficiency [J]. Socio-Economic Planning Sciences, 2009, 43(4):274-287.
[35]
Hansen B E. Threshold effects in non-dynamic panels:Estimation, testing, and inference [J]. Journal of Econometrics, 1999,93(2):345-368.
[36]
朱承亮.环境规制下中国火电行业全要素生产率及其影响因素[J]. 经济与管理评论, 2016,32(6):60-70. Zhu C L. Total factor productivity and its influencing factors in China's thermal power industry under environmental regulation [J]. Review of Economics & Management, 2016,32(6):60-70.
[37]
李梅,柳士昌.对外直接投资逆向技术溢出的地区差异和门槛效应——基于中国省际面板数据的门槛回归分析[J]. 管理世界, 2012,(1):21-32,66. Li M, Liu S C. Regional differences and threshold effects of reverse technology spillover of outward direct investment:A threshold regression analysis based on China's interprovincial panel data [J]. Management World, 2012,(1):21-32,66.
[38]
余壮雄,陈婕,董洁妙.通往低碳经济之路:产业规划的视角[J]. 经济研究, 2020,55(5):116-132. Yu Z X, Chen J, Dong Jemiao. Dong J M. The road to lowlanning [J]. Economic Research, 2020,55(5):116-132. carbon economy:a perspective of industrial pEconomic Research, 2020,55(5):116-132.
[39]
Zhou Y, Xing X, Fang K, et al. Environmental efficiency analysis of power industry in China based on an entropy SBM model [J]. Energy Policy, 2013,57:68-75.
[40]
Xian Y, Wang K, Shi X, et al. Carbon emissions intensity reduction target for China's power industry:An efficiency and productivity perspective [J]. Journal of Cleaner Production, 2018,197:1022-1034.