The spatial correlation network structure and formation mechanism of carbon emission performance: A case study of the Yangtze River Economic Belt
LIN Ming-yu1, CUI Xing-hua2
1. School of Statistics and Data Science, Jiangxi University of Finance and Economics, Nanchang 330013, China; 2. School of Economics, Jiangxi University of Finance and Economics, Nanchang 330013, China
Abstract:This study had taken cities in the Yangtze River Economic Belt from 2006 to 2019 as the research object. It quantitatively analyzed the spatial correlation strength of carbon emission performance in the region by introducing a modified gravity model. Furthermore, it explored the structural characteristics and formation mechanism of the spatial correlation network using social network analysis model. Research shows that: (1) The overall carbon emissions performance of cities in the Yangtze River Delta Economic Belt was showing an upward trend, with obvious Matthew and radiation effects. The overall spatial correlation strength is not high, and there is a trend of weakening. The connectivity and robustness of the spatial network structure are strong, and the redundant paths of the network are gradually decreasing, but do not have the characteristics of strict hierarchy. (2) From the characteristics of different river basins, the urban clusters in the middle and lower reaches of the Yangtze River are in a relatively central position in the spatial network, playing a leading role in the carbon emission performance spatial network of cities in the Yangtze River Economic Belt, while the urban clusters in the upstream region are in a relatively disadvantaged position, playing a central and transmission role. (3) From the perspective of spatial correlation module, the carbon emission performance spatial correlation module of cities in the Yangtze River Economic Belt can be divided into "net spillover", "net benefit", and "bidirectional spillover" modules. Within the module, there is a clear clustering and spatial correlation effect between cities, and there is also a clear synergy and spatial spillover effect between each module. (4) From the perspective of impact mechanisms, spatial adjacency relationships, climate change differences, transportation infrastructure differences, population size differences, and energy structure differences play an important role in the formation and evolution of the spatial correlation network structure of carbon emissions performance in cities along the Yangtze River Economic Belt.
林明裕, 崔兴华. 碳排放绩效的空间关联网络结构及其形成机制——以长江经济带为例[J]. 中国环境科学, 2024, 44(5): 2867-2878.
LIN Ming-yu, CUI Xing-hua. The spatial correlation network structure and formation mechanism of carbon emission performance: A case study of the Yangtze River Economic Belt. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(5): 2867-2878.
[1] 李庆.长江经济带城市二氧化碳排放空间异质性分析[J].生态经济, 2020,36(12):21-26. Li Q. Analysis of spatial heterogeneity of carbon dioxide emissions from cities in the Yangtze River Economic Belt[J]. Ecological Economy, 2020,36(12):21-26. [2] 赵菲菲,胡政,赵旭,等.长江经济带碳排放与经济增长"脱钩陷阱"的识别与破解研究[J].长江流域资源与环境, 2023,32(6):1127-1137. Zhao F F, Hu Z, Zhao X, et al. Identification and solution of decoupling trap between carbon emissions and economic growth in Yangtze River Economic[J]. Resources and Environment in the Yangtze Basin, 2023,32(6):1127-1137. [3] 邵海琴,王兆峰.中国交通碳排放效率的空间关联网络结构及其影响因素[J].中国人口·资源与环境, 2021,31(4):32-41. Shao H Q, Wang Z F. Spatial network structure of transportation carbon emissions efficiency in China and its influencing factors[J]. China Population, Resources and Environment, 2021,31(4):32-41. [4] 王少剑,高爽,黄永源,等.基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J].地理学报, 2020,75(6):1316-1330. Wang S J, Gao S, Hung Y Y, et al. Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model[J]. Acta Geographica Sinica, 2020, 75(6):1316-1330. [5] Mielnik O, Goldemberg J. Communication the evolution of the"carbonization index"in developing countries[J]. Energy Policy, 1999,27(5):307-308. [6] Yamaji K, Matsuhashi R, Nagata Y, et al. A study on economic measures for CO2 reduction in Japan[J]. Energy Policy, 1993,21(2):123-132. [7] Sun J W. The decrease of CO2 emission intensity is decarbonization at national and global levels[J]. Energy Policy, 2005,33(8):975-978. [8] Stretesky P B, Lynch M J. A cross-national study of the association between per capita carbon dioxide emissions and exports to the United States[J]. Social Science Research, 2009,38(1):239-250. [9] Zhang Z, Qu J, Zeng J. A quantitative comparison and analysis on the assessment indicators of greenhouse gases emission[J]. Journal of Geographical Sciences, 2008,18(4):387-399. [10] Ang B W. Is the energy intensity a less useful indicator than the carbon factor in the study of climate change?[J]. Energy Policy, 1999, 27(15):943-946. [11] Zhou P, Ang B W, Poh K L. A survey of data envelopment analysis in energy and environmental studies[J]. European journal of operational research. 2008,189(1):1-18. [12] 余敦涌,张雪花,刘文莹.基于随机前沿分析方法的碳排放效率分析[J].中国人口·资源与环境, 2015,25(S2):21-24. Yu D Y, Zhang X H, Liu W Y. Analysis of carbon emission efficiency based on stochastic frontier[J]. China Population, Resources and Environment, 2015,25(S2):21-24. [13] 王群伟,周鹏,周德群.我国二氧化碳排放绩效的动态变化、区域差异及影响因素[J].中国工业经济, 2010,27(1):45-54. Wang Q W, Zhou P, Zhou D Q. Research on dynamic carbon dioxide emissions performance, regional disparity and affecting factors in China[J]. China Industrial Economics, 2010,27(1):45-54. [14] Zaim O, Taskin F. Environmental efficiency in carbon dioxide emissions in the OECD:A non-parametric approach[J]. Journal of Environmental Management, 2000,58(2):95-107. [15] Zofio J L, Prieto A M. Environmental efficiency and regulatory standards:The case of CO2 emissions from OECD industries[J]. Resource and Energy Economics. 2001,23(1):63-83. [16] Zhou P, Ang B W, Han J Y. Total factor carbon emission performance:a Malmquist index analysis[J]. Energy Economics, 2010,32(1):194-201. [17] 李金铠,马静静,魏伟.中国八大综合经济区能源碳排放效率的区域差异研究[J].数量经济技术经济研究, 2020,37(6):109-129. Li J K, Ma J J, Wei W. Study on regional differences of energy carbon emission efficiency in eight economic areas of China[J]. Journal of Quantitative&Technological Economics, 2020,37(6):109-129. [18] 邵海琴,王兆峰.长江经济带旅游业碳排放效率的综合测度与时空分异[J].长江流域资源与环境, 2020,29(8):1685-1693. Shao H Q, Wang Z F. Comprehensive measurement of carbon emissions efficiency of tourism and its Spatio-temporal differentiation in the Yangtze River Economic Belt[J]. Resources and Environment in the Yangtze Basin, 2020,29(8):1685-1693. [19] 马大来,陈仲常,王玲.中国省际碳排放效率的空间计量[J].中国人口·资源与环境, 2015,25(1):67-77. Ma D L, Chen Z C, Wang L. Spatial econometrics research on Inter-provincial carbon emissions efficiency in China[J]. China Population, Resources and Environment, 2015,25(1):67-77. [20] Zhou Z, Liu C, Zeng X, et al. Carbon emission performance evaluation and allocation in Chinese cities[J]. Journal of Cleaner Production. 2018,172:1254-1272. [21] Yang J, Tang L, Mi Z, et al. Carbon emissions performance in logistics at the city level[J]. Journal of Cleaner Production. 2019,231:1258-1266. [22] 高鸣,宋洪远.中国农业碳排放绩效的空间收敛与分异——基于Malmquist-luenberger指数与空间计量的实证分析[J].经济地理, 2015,35(4):142-148. Gao M, Song H Y. Dynamic changes and spatial agglomeration analysis of the Chinese agricultural carbon emissions performance[J]. Economic Geography, 2015,35(4):142-148. [23] 蔺雪芹,边宇,王岱.京津冀地区工业碳排放效率时空演化特征及影响因素[J].经济地理, 2021,41(6):187-195. Lin X Q, BianY, Wang D. Spatiotemporal evolution characteristics and influencing factors of industrial carbon emission efficiency in Beijing-Tianjin-Hebei Region[J]. Economic Geography, 2021,41(6):187-195. [24] 王凯,张淑文,甘畅,等.中国旅游业碳排放效率的空间网络结构及其效应研究[J].地理科学, 2020,40(3):344-353. Wang K, Zhang S W, Gan C, et al. Spatial network structure of carbon emission efficiency of tourism industry and its effects in China[J]. Scientia Geographica Sinica, 2020,40(3):344-353. [25] 刘华军,赵浩.中国二氧化碳排放强度的地区差异分析[J].统计研究, 2012,29(6):46-50. Liu H J, Zhao H. Empirical analysis of the regional differences of China's carbon dioxide emissions intensity[J]. Statistical Research, 2012,29(6):46-50. [26] 邵帅,范美婷,杨莉莉.经济结构调整、绿色技术进步与中国低碳转型发展——基于总体技术前沿和空间溢出效应视角的经验考察[J].管理世界, 2022,38(2):46-69. Shao S, Fan M T, Yang L L. Economic restructuring, green technical progress, and Low-carbon transition development in China:An empirical investigation based on the overall technology frontier and spatial spillover effect[J]. Journal of Management World, 2022,38(2):46-69. [27] 邓荣荣,张翱祥.中国城市数字金融发展对碳排放绩效的影响及机理[J].资源科学, 2021,43(11):2316-2330. Deng R R, Zang A X. The impact of urban digital finance development on carbon emission performance in China and mechanism[J]. Resources Science, 2021,43(11):2316-2330. [28] Kou J, Xu X. Does internet infrastructure improve or reduce carbon emission performance?A dual perspective based on local government intervention and market segmentation[J]. Journal of Cleaner Production, 2022,379:134789. [29] Zhang W, Liu X, Wang D, et al. Digital economy and carbon emission performance:Evidence at China's city level[J]. Energy Policy, 2022, 165:112927. [30] Xu L, Fan M, Yang L, et al. Heterogeneous green innovations and carbon emission performance:Evidence at China's city level[J]. Energy Economics. 2021,99:105269. [31] 周迪,周丰年,王雪芹.低碳试点政策对城市碳排放绩效的影响评估及机制分析[J].资源科学, 2019,41(3):546-556. Zhou D, Zhou F N, Wang X Q. Impact of Low-carbon pilot policy on the performance of urban carbon emissions and its mechanism[J]. Resources Science, 2019,41(3):546-556. [32] Du Z, Wang Y. Does energy-saving and emission reduction policy affects carbon reduction performance?A quasi-experimental evidence in China[J]. Applied Energy, 2022,324:119758. [33] 郭沛,梁栋.低碳试点政策是否提高了城市碳排放效率——基于低碳试点城市的准自然实验研究[J].自然资源学报, 2022, 37(7):1876-1892. Guo P, Liang D. Does the low-carbon pilot policy improve the efficiency of urban carbon emissions:Quasi-natural experimental research based on Low-carbon pilot cities[J]. Journal of Natural Resources, 2022,37(7):1876-1892. [34] 于向宇,陈会英,李跃.基于合成控制法的碳交易机制对碳绩效的影响[J].中国人口·资源与环境, 2021,31(4):51-61. Yu X Y, Chen H Y, Li Y. Impact of carbon emission trading mechanism on carbon performance based on synthetic control method[J]. China Population, Resources and Environment, 2021,31(4):51-61. [35] Zhou A, Xin L, Li J. Assessing the impact of the carbon market on the improvement of China's energy and carbon emission performance[J]. Energy. 2022,258:124789. [36] Tone K, Tsutsui M. An epsilon-based measure of efficiency in DEA-a third pole of technical efficiency[J]. European Journal of Operational Research. 2010,207(3):1554-1563. [37] Andersen P, Petersen N C. A procedure for ranking efficient units in data envelopment analysis[J]. Management Science, 1993,39(10):1261-1264. [38] 王凯,余芳芳,胡奕,等.中国旅游业碳减排潜力的空间关联网络结构及其影响因素[J].地理科学, 2022,42(6):1034-1043. Wang K, Yu F F, Hu Y, et al. Spatial correlation network structure of tourism carbon emission reduction potential and the determinants in China[J]. Scientia Geographica Sinica, 2022,42(6):1034-1043. [39] Zhang R, Tai H, Cheng K, et al. Carbon emission efficiency network formation mechanism and spatial correlation complexity analysis:Taking the Yangtze River Economic Belt as an example[J]. Science of The Total Environment, 2022,841:156719. [40] 张明斗,翁爱华.长江经济带城市水资源利用效率的空间关联网络及形成机制[J].地理学报, 2022,77(9):2353-2373. Zhang M D, Weng A H. Spatial correlation network and its formation mechanism of urban water utilization efficiency in the Yangtze River Economic Belt[J]. Scientia Geographica Sinica, 2022,77(09):2353-2373. [41] Wasserman S, Faust K. Social network analysis:Methods and applications[M]. Cambridge:Cambridge University Press, 1994:411-416. [42] 李梦程,王成新,刘海猛,等.黄河流域城市发展质量评价与空间联系网络特征[J].经济地理, 2021,41(12):84-93. Li M C, Wang C X. Evaluation of urban development quality and characteristics of spatial connection network in the Yellow River Basin[J]. Economic Geography, 2021,41(12):84-93. [43] 冯颖,侯孟阳,姚顺波.中国粮食生产空间关联网络的结构特征及其形成机制[J].地理学报, 2020,75(11):2380-2395. FengY, Hou M Y, Yao S B. Structural characteristics and formation mechanism of spatial correlation network of grain production in China[J]. Acta Geographica Sinica, 2020,75(11):2380-2395.