1. College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; 2. Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, China
摘要 随着社会经济发展及人类活动扩大,大气中CO2的浓度日益增加,且带来诸多环境污染问题.因此开发高效、可持续的CO2转化方法至关重要.本文基于电催化反应机理,制备了一系列CuO/CeO2纳米棒复合材料,以促进二氧化碳高选择性还原为C2H4.结果表明,经过优化后的CuO/CeO2-2 (molCeO2:molCuO= 2%)电催化剂在电流密度达到20mA/cm2时,所需电位最低(-0.99V vs. RHE),且对乙烯具有最高的选择性,在电压为-1.08V vs. RHE时,法拉第效率高达46%.此优势可能与大的表面积、更粗糙的表面以及CuO和CeO2之间的协同效应有关,有效提高了反应活性位点和电子转移效率.本研究将为设计和优化CuO基复合材料以实现CO2的高效转化提供理论指导.
Abstract:With the development of social economy and the expansion of human activities, the concentration of CO2 in the atmosphere is increasing day by day, and it brings many environmental pollution problems, hence, developing efficient and sustainable techniques for CO2 conversion is of utmost importance. Based on the electrocatalytic reaction mechanism, a series of CuO/CeO2 nanorods were fabrication for enhancing the electrochemical reduction of carbon dioxide. The optimized CuO/CeO2-2 (molCeO2:molCuO= 2%) electrocatalyst needed the potential of -0.99V vs. RHE to achieve the current density of 20mA/cm2, and displayed the highest FEC2H4 of 46 % at the potential of -1.08V vs. RHE. The decent property is attributed to large surface area, rough surface, and synergistic effect between CuO and CeO2, thereby enhancing reaction activity sites and electron transfer efficiency. The study will provide theoretical guidance for the design and optimization of CuO-based composites for efficient CO2 conversion.
[1] 杨予辰,杨应举,刘晶,等.铜改性黄铁矿催化剂的CO2电催化还原性能研究[J]. 燃料化学学报, 2022,50(9):1167-1174. Yang Y C, Yang Y J, Liu J, et al. Copper modification of pyrite for CO2 electrochemical reduction [J]. Journal of Fuel Chemistry and Technology, 2022,50(9):1167-1174. [2] Zheng M, Zhou X, Zhou Y, et al. Theoretical insights into mechanisms of electrochemical reduction of CO2 to ethylene catalyzed by Pd3Au [J]. Applied Surface Science, 2022,572:151474. [3] Yang B, Liu K, Li H, et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric-thermal field on copper nanoneedles [J]. Journal of the American Chemical Society, 2022, 144(7):3039-3049. [4] Yan X, Chen C, Wu Y, et al. Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO [J]. Chemical Science, 2021,12(19): 6638-6645. [5] Chu S, Yan X, Choi C, et al. Stabilization of Cu+ by tuning a CuO–CeO2 interface for selective electrochemical CO2 reduction to ethylene [J]. Green Chemistry, 2020,22(19):6540-6546. [6] Zhao D, Zhang S, Guo T, et al. Amorphous-Confined crystalline CuO nanoflakes for enhanced ethylene production from CO2 electroreduction [J]. ChemCatChem, 2023,15(4):e202201413. [7] Haines A R, Hemminger J C. Stability of Cu/TiO2 nanoparticle model catalysts under electrochemical CO2 reduction conditions [J]. ACS Catalysis, 2021,11(12):6960-6970. [8] Xue L, Zhang C, Wu J, et al. Unveiling the reaction pathway on Cu/CeO2 catalyst for electrocatalytic CO2 reduction to CH4 [J]. Applied Catalysis B: Environmental, 2022,304:120951. [9] Zhang L, Chen R, Tu Y, et al. Revealing the crystal facet effect of ceria in Pd/CeO2 catalysts toward the selective oxidation of benzyl alcohol [J]. ACS Catalysis, 2023,13(4):2202-2213. [10] Zhang J, Yang Y, Qin F, et al. Catalyzing generation and stabilization of oxygen vacancies on CeO2-x nanorods by pt nanoclusters as nanozymes for catalytic therapy [J]. Advanced Healthcare Materials, 2023:2302056. [11] 张宣娇,孙羽,刘明,等.CeO2形貌结构对催化湿式空气氧化苯酚性能的影响[J]. 中国环境科学, 2020,40(10):4330-4334. Zhang X J, Sun Y, Liu M, et al. Effect of morphology on the performance of CeO2 for catalytic wet air oxidation of phenol [J]. China Environmental Science, 2020,40(10):4330-4334. [12] Gao D, Zhang Y, Zhou Z, et al. Enhancing CO2 electroreduction with the metal–oxide interface [J]. Journal of the American Chemical Society, 2017,139(16):5652-5655. [13] 李跃军,曹铁平,孙大伟,等.鳞片状分层结构Ni(OH)2/CeO2制备及光催化CO2还原性能[J/OL]. 中国稀土学报.http://kns.cnki.net/ kcms/detail/11.2365.TG.20230602.1444.004.html. Li Y J, Cao T P, Sun D W, et al. Ni(OH)2/CeO2 scaly-like hierarchical structure: construction and its CO2 reduction performance [J/OL]. Journal of the Chinese Society of Rare Earths. http://kns.cnki.net/ kcms/detail/11.2365.TG.20230602.1444.004.html. [14] Wang S, Chen H, Lin W, et al. Efficiently electroreducing CO2 to ethylene on heterostructured CeO2/CuO [J]. Industrial & Engineering Chemistry Research, 2022,61(44):16445-16452. [15] Jabbar Z H, Graimed B H, Ammar S H, et al. Design and construction of a robust ternary Bi5O7I/Cd0.5Zn0.5S/CuO photocatalytic system for boosted photodegradation of antibiotics via dual-S-scheme mechanisms: Environmental factors and degradation intermediates [J]. Environmental research, 2023,234:116554. [16] Yang L, He R, Wang X, et al. Self-supported NiO/CuO electrodes to boost urea oxidation in direct urea fuel cells [J]. Nano Energy, 2023, 115:108714. [17] 徐忠震,贾亚辉,高道伟,等.富氧空位/梯次结构CeO2的制备及光催化CO2还原[J]. 中国环境科学, 2022,42(11):5072-5079. Xu Z Z, Jia Y H, Gao D W, et al. Preparation of oxygen vacancy- enriched CeO2 catalyst with hierarchical structure and its photocatalytic CO2 reduction performance [J]. China Environmental Science, 2022,42(11):5072-5079. [18] Chen L, Ren D, Hou X, et al. Asymmetric oxygen vacancy-enriched Mn2O3@CeO2 for NO oxidation with excellent low-temperature activity and boosted SO2-resistance [J]. Applied Catalysis B: Environmental, 2024,340:123202. [19] Velasco-Vélez J-J, Chuang C-H, Gao D, et al. On the activity/ selectivity and phase stability of thermally grown copper oxides during the electrocatalytic reduction of CO2. ACS Catalysis, 2020,10(19): 11510-11518. [20] Lv Y, Liu J, Zhang Z, et al. Two-step liquid phase synthesis of ZnO@CuO core–shell heterojunction nanorods arrays composites photodetectors with the enhanced UV photoelectric performances [J]. Optics & Laser Technology, 2024,168:109958. [21] Zhao D, Tu C M, Hu X J, et al. Notable in situ surface transformation of Cu2O nanomaterials leads to dramatic activity enhancement for CO oxidation [J]. RSC Advances, 2017,7(60):37596-37603. [22] 郭天宇,范祥瑞,白德豪,等.异质结CeO2/BiOBr的构筑及其光催化降解罗丹明B [J]. 中国环境科学, 2023,43(11):5845-5854. Guo T Y, Fan X R, Bai D H, et al. Construction of CeO2/BiOBr heterojuction for photocatalytic degradation of Rhodamine B [J]. China Environmental Science, 2023,43(11):5845-5854. [23] Guo W, Bi J, Zhu Q, et al. Highly selective CO2 electroreduction to CO on Cu–Co bimetallic catalysts [J]. ACS Sustainable Chemistry & Engineering, 2020,8(33):12561-12567. [24] Li C, Wang Y, Xiao N, et al. Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction [J]. Carbon, 2019, 151:46-52. [25] Dai C, Tian X, Nie Y, et al. Successful synthesis of 3D CoSe2 hollow microspheres with high surface roughness and its excellent performance in catalytic hydrogen evolution reaction [J]. Chemical Engineering Journal, 2017,321:105-112. [26] Zhang L, Feng J, Liu S, et al. Atomically dispersed Ni-Cu catalysts for pH-universal CO2 electroreduction [J]. Advanced materials, 2023, 35(13):2209590.