Interactions between lepidocrocite and heavy metals: Research progress from interfacial processes to environmental behaviors
FAN Cong1, FANG Jun-ran1, LI Xiao-fei2, GUO Chu-ling3, SHEN Yu1, LU Gui-ning3, MEI Yuan-fei4, DANG Zhi3
1. Intelligent Manufacturing Service International Science and Technology Cooperation Base, School of Environmental and Resource Sciences, Chongqing Technology and Business University, Chongqing 400067, China; 2. School of Environmental and Chemical Engineering, Foshan University of Science and Technology, Foshan Guangdong 528225, China; 3. School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Guangdong 510006, China; 4. School of Management Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
Abstract:The biogeochemical cycle of iron plays a key role in the migration and transformation processes of soil materials, especially in the environmental behavior of heavy metals. Lepidocrocite is a common metastable iron (hydroxyl) oxide that typically found in soils with seasonal redox alternations. It has a large specific surface area and high surface activity, and can drive soil material circulation. This article takes the stability of lepidocrocite as a link, to explain the evolutionary patterns of its three different roles of as an original mineral, precursor (intermediate product) and final product in different transformation pathways. The interaction mechanism between formation/transformation of lepidocrocite and fate of heavy metals was systematically discussed from the perspective of biogeochemical cycles. The impact of typical environmental factors (such as pH, oxyanions, dissolved organic matter and microorganisms) on the stability of lepidocrocite and the occurrence forms of heavy metals was focused on. Future research trends include the transformation mechanism of iron minerals in complex environments, the microscopic reaction mechanism of heavy metals at the mineral-water interface, and the regulation of environmental factors on the fate of heavy metals. These studies aim to provide solutions for pollution remediation by regulating the iron cycle and understanding the occurrence status of heavy metals. Additionally, they offer insights for predicting the environmental behavior of heavy metals under the influence of iron minerals.
范聪, 方君然, 李晓飞, 郭楚玲, 申渝, 卢桂宁, 梅远飞, 党志. 纤铁矿与重金属的相互作用——从界面过程到环境行为的研究进展[J]. 中国环境科学, 2024, 44(8): 4484-4495.
FAN Cong, FANG Jun-ran, LI Xiao-fei, GUO Chu-ling, SHEN Yu, LU Gui-ning, MEI Yuan-fei, DANG Zhi. Interactions between lepidocrocite and heavy metals: Research progress from interfacial processes to environmental behaviors. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(8): 4484-4495.
[1] Kappler A, Bryce C, Mansor M, et al. An evolving view on biogeochemical cycling of iron [J]. Nature Reviews Microbiology, 2021,19(6):360-374. [2] 王小明.几种亚稳态铁氧化物的结构、形成转化及其表面物理化学特性[D]. 湖北:华中农业大学, 2015. Wang X M. The Structures, Formation, Transformation, and Surface Physicochemical Properties of Several Metastable Iron Oxides [D]. Hubei:Huazhong Agricultural University, 2015. [3] Cornell R M, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences, and uses [M]. Weinheim: Wiley-vch, 2003. [4] Couture R M, Charlet L, Markelova E, et al. On-off mobilization of contaminants in soils during redox oscillations [J]. Environmental Science & Technology, 2015,49(5):3015-3023. [5] 胡世文,刘同旭,李芳柏,等.土壤铁矿物的生物-非生物转化过程及其界面重金属反应机制的研究进展[J]. 土壤学报, 2022,59(1): 54-65. Hu S W, Liu T X, Li F B, et al. Research Progress on the Bio-Abiotic Transformation Processes of Soil Iron Minerals and the Mechanism of Heavy Metal Reactions at Their Interfaces [J]. Acta Pedologica Sinica, 2022,59(1):54-65. [6] 党志,姚谦,李晓飞,等.矿区土壤中重金属形态分布的地球化学机制[J]. 矿物岩石地球化学通报, 2020,39(1):1-11. Dang Z, Yao Q, Li X F, et al. Geochemical Mechanisms of Heavy Metal Speciation Distribution in Mining Soils [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020,39(1):1-11. [7] Ishikawa T, Minamigawa M, Kandori K, et al. Influence of metal ions on the transformation of γ-FeOOH into α-FeOOH [J]. Journal of the Electrochemical Society, 2004,151(9):B512. [8] Frierdich A J, Scherer M M, Bachman J E, et al. Inhibition of Trace Element Release During Fe(II)-Activated Recrystallization of Al-, Cr-, and Sn-Substituted Goethite and Hematite [J]. Environmental Science & Technology, 2012,46:10031-10039. [9] Kumpulainen S, Raisanen M L, Von Der Kammer F, et al. Ageing of synthetic and natural schwertmannites at pH 2-8[J]. Clay Miner, 2008,43(3):437-448. [10] Hu S W, Liang Y, Liu T, et al. Kinetics of As(V) and carbon sequestration during Fe(II)-induced transformation of ferrihydrite- As(V)-fulvic acid coprecipitates [J]. Geochimica et Cosmochimica Acta, 2020,272:160-176. [11] Wang Z M, Schenkeveld W D C, Kraemer S M, et al. Synergistic Effect of Reductive and Ligand Promoted Dissolution of Goethite [J]. Environmental Science & Technology, 2015,49(12):7236. [12] 范聪.施氏矿物还原-重结晶过程中重金属的再分配机制研究[D]. 广东:华南理工大学, 2019. Fan C. A Study on the Redistribution Mechanism of Heavy Metals During the Reduction-Recrystallization Process of Schützenberger Minerals [D]. Guangdong: South China University of Technology, 2019. [13] 丁竑瑞,李艳,鲁安怀,等.微生物还原铁氧化物矿物的电化学研究[J]. 矿物岩石地球化学通报, 2011,30(3):299-303. Ding H D, Li Y, Lu A H, et al. Electrochemical Study on the Reduction of Iron Oxide Minerals by Microorganisms [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011,30(3):299-303. [14] Schwertmann U, Taylor R M. Natural and synthetic poorly crystallized lepidocrocite [J]. Clay Miner, 1979,14:285-293. [15] O'Loughlin E J, Boyanov M I, Flynn T M. Effects of bound phosphate on the bioreduction of lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3) and formation of secondary minerals [J]. Environmental Science & Technology, 2013,47(16):9157-9166. [16] Boland D D, Collins R N, Miller C J, et al. Effect of Solution and Solid-Phase Conditions on the Fe(II)-Accelerated Transformation of Ferrihydrite to Lepidocrocite and Goethite [J]. Environmental Science & Technology, 2014,48:5477-5485. [17] 李晓飞.晶面依赖的纤铁矿相转化过程六价铬吸附及再分配机制研究[D]. 广东:华南理工大学, 2022. Li X F. Study on the Facet-Dependent Transformation Process of Akaganeite and the Adsorption and Redistribution Mechanism of Hexavalent Chromium [D]. Guangdong: South China University of Technology, 2022. [18] Christensen H, Christensen A N, Turpeinen U, et al. Hydrogen bonds of gamma-FeOOH [J]. Acta Chemica Scandinavica, 1978,32a:87-88. [19] Violante A, Barberis E, Pigna M, et al. Factors affecting the formation, nature, and properties of iron precipitation products at the soil-root interface [J]. Journal of Plant Nutrition, 2003,26(10/11):1889-1908. [20] Schwertmann U, Wolska E. The influence of aluminum on iron oxides Al for Fe substitution in synthetic lepidocrocite [J]. Clays and Clay Minerals, 1990,38:209-212. [21] Domingo C, Rodriguezclemente R, Blesa M. Morphological properties of alpha-FeOOH, gamma-FeOOH and Fe3O4 obtained by oxidation of aqueous Fe(II) solutions[J]. Journal of colloid and interface science, 1994,165:244-252. [22] Ding X B, Song X W, Boily J F. Identification of fluoride and phosphate binding sites at FeOOH surfaces [J]. Journal of Physical Chemistry C, 2012,116:21939-21947. [23] Song X W, Boily J F. Structural controls on OH site availability and reactivity at iron oxyhydroxide particle surfaces [J]. Physical Chemistry Chemical Physics, 2012,14:2579-2586. [24] Borowski S C, Biswakarma J, Kang K, et al. Structure and reactivity of oxalate surface complexes on lepidocrocite derived from infrared spectroscopy, DFT-calculations, adsorption, dissolution and photochemical experiments [J]. Geochimica et Cosmochimica Acta, 2018,226:244-262. [25] Chatellier X, Fortin D, West M, et al. Effect of the presence of bacterial surfaces during the synthesis of Fe-oxides by oxidation of ferrous ions [J]. European Journal of Mineralogy, 2001,13(4):705-714. [26] Lee A P, Brooker L R, Macey D J, et al. Apatite Mineralization in Teeth of the Chiton A canthopleura echinata [J]. Calcified Tissue International, 2000,67:408-415. [27] Schwertmann U, Fechter H. The formation of green rust and its transformation to lepidocrocite [J]. Clay minerals, 1994,29(1):87-92. [28] Fendorf S E, LaForce M J, Li G C, et al. Pulsed-flow kinetic analysis of solid-phase transformations in mineral suspensions using XANES spectroscopy: Oxidation of FeS to -FeOOH (abstract) [C]. Amer Chemical Soc, 1997,214:34-GEOC. [29] Lewis D G, Farmer V C. Infrared absorption of surface hydroxyl groups and lattice vibrations in lepidocrocite (γ-FeOOH) and boehmite (γ-AlOOH) [J]. Clay Minerals, 1986,21:93-100. [30] Legrand L, Mazerolles L, Chausse A. The oxidation of carbonate green rust into ferric phases: solid state reaction or transformation via solution [J]. Geochim. Cosmochim. Acta, 2004,68:3497-3507. [31] Han X, Song J, Li Y L, et al. As (III) removal and speciation of Fe (Oxyhydr) oxides during simultaneous oxidation of As (III) and Fe (II) [J]. Chemosphere, 2016,147:337-344. [32] Schwertmann U, Thalmann H. The influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2solutions[J]. Geo Science World, 1976,11(3):189-200. [33] Ohta S, Effendi S, Tanaka N, et al. Ultisols of lowland dipterocarp forest in East Kalimantan, Indonesia clay minerals, free oxides, and exchangeable cations [J]. Soil Science and Plant Nutrition, 1993, 39(1):1-12. [34] Cumplido J, Barron V, Torrent J. Effect of phosphate on the formation of nanophase lepidocrocite from Fe(II) sulfate [J]. Clays and Clay Minerals, 2000,48:503-510. [35] Wang Y, Morin G, Ona-Nguema G, et al. Arsenic(III) and arsenic(V) speciation during transformation of lepidocrocite to magnetite [J]. Environmental Science & Technology, 2014,48(24):14282-14290. [36] Schwertmann U, Taylor R M. The transformation of lepidocrocite to goethite [J]. Clays and Clay Minerals, 1972a,20(3):151-158. [37] Schwertmann U, Taylor R M. The influence of silicate on the transformation of lepidocrocite to goethite [J]. Clays and Clay Minerals, 1972b,20(3):159-164. [38] Hansel C M, Benner S G, Fendorf S. Competing Fe(II)-Induced Mineralization Pathways of Ferrihydrite [J]. Environmental Science & Technology, 2005,39(18):7147-7153. [39] 靳小虎.亚铁诱导铁硫酸盐矿物晶相转化过程及重金属再分配行为[D]. 广东:华南理工大学, 2021. Jin X H. Study on the Ferrous-Induced Transformation of Iron Sulfate Mineral Crystal Phase and the Redistribution Behavior of Heavy Metals [D]. Guangdong: South China University of Technology, 2021. [40] Liu H, Li P, Zhu M Y, et al. Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite [J]. Journal of Solid State Chemistry, 2007,180(7):2121-2128. [41] Liu H, Guo H, Li P, et al. The transformation of ferrihydrite in the presence of trace Fe(II): The effect of the anionic media [J]. Journal of Solid State Chemistry, 2008,181(10):2666-2671. [42] 范卿雅.Fe(Ⅱ)氧化形成的铁氧化物的晶型与稳定性:共存矿物的影响[D]. 华东师范大学, 2022. Fan Q Y. The Crystal Form and Stability of Iron Oxides Formed by Fe(Ⅱ) Oxidation: The Influence of Coexisting Minerals [D]. East China Normal University, 2022. [43] 杨春莉,张生栋.Np(Ⅴ)吸附于纤铁矿/水界面的扩展X射线吸收精细结构(EXAFS)分析[J]. 核化学与放射化学, 2016,38(4):225-231. Yang C L, Zhang S D. Extended X-ray Absorption Fine Structure (EXAFS) Analysis of Np(V) Adsorption on the Goethite/Water Interface [J]. Journal of Nuclear Chemistry and Radiochemistry, 2016, 38(4):225-231. [44] Li X F, Guo C L, Jin X H, et al. Molecular-scale study of Cr(VI) adsorption onto lepidocrocite facets by EXAFS, in situ ATR-FTIR, theoretical frequency calculations and DFT+U techniques [J]. Environmental Science: Nano, 2022,9:568-581. [45] 廖聪坚.微生物驱动氧化铁还原耦合砷固定-释放机制及生物质炭的调控[D]. 广东:中国科学院大学(中国科学院广州地球化学研究所), 2021. Liao C J. Microbially Driven Reduction of Iron Oxides Coupled with Arsenic Immobilization-Release Mechanism and Regulation by Biochar [D]. Guangdong: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2021. [46] Wang L, Giammar D E. Effects of pH, dissolved oxygen, and aqueous ferrous iron on the adsorption of arsenic to lepidocrocite [J]. Journal of Colloid and Interface Science. 2015,448:331-338. [47] Shao Y, Sun Q, Wang L, et al. Migration and transformation of Sb are affected by Mn(III/IV) associated with lepidocrocite originating from Fe(II) oxidation [J]. Journal of Environmental Sciences, 2022,115(4): 308-318. [48] Liu H, Lu X C, Li M, et al. Structural incorporation of manganese into goethite and its enhancement of Pb(II) adsorption [J]. Environmental Science & Technology, 2018,52:4719-4727. [49] 胡碧云.不同构型纤铁矿中Cd、Co、Zn的同晶替代研究[D]. 湖北:华中农业大学, 2019. Hu B Y. A Study on Isomorphous Substitution of Cd, Co, Zn in Goethites of Different Structures [D]. Hubei: Huazhong Agricultural University, 2019. [50] Li W, Wang L, Liu F, et al. Effects of Al3+ doping on the structure and properties of goethite and its adsorption behavior towards phosphate [J]. Journal of Environmental Sciences, 2016,45:18-27. [51] Kim J, Ilott A J, Middlemiss D S, et al. 2H and 27Al solid-state NMR study of the local environments in Al-doped 2-line ferrihydrite, goethite, and lepidocrocite [J]. Chemistry of Materials, 2015,27(11): 3966-3978. [52] Pinney N, Morgan D. Thermodynamics of Al-substitution in Fe-oxyhydroxides [J]. Geochimica et Cosmochimica Acta, 2013,120: 514-530. [53] Liao S, Wang X M, Yin H, et al. Effects of Al substitution on local structure and morphology of lepidocrocite and its phosphate adsorption kinetics [J]. Geochimica et Cosmochimica Acta, 2020,276. [54] Latta D E, Bachman J E, Scherer M M. Fe electron transfer and atom exchange in goethite: Influence of Al-substitution and anion sorption [J]. Environmental Science & Technology, 2012,46(19):10614-10623. [55] Neumann A, Olson T L, Scherer M M. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites [J]. Environmental Science & Technology, 2013,47(13):6969-6977. [56] Wiederhold J G, Kraemer S M, Teutsch N, et al. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite [J]. Environmental Science & Technology, 2006,40(12):3787-3793. [57] 刘佳,丁竑瑞,葛潇,等.海洋透光层代表性铁氧化物半导体矿物——针铁矿和纤铁矿光还原特性及其环境效应[J]. 矿物岩石地球化学通报, 2022,41(6):1273-1283. Liu J, Ding H R, Ge X, et al. Photoreduction Characteristics and Environmental Effects of Representative Iron Oxide Semiconductor Minerals in the Oceanic Photic Zone: Goethite and Lepidocrocite [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022,41(6): 1273-1283. [58] Schulz K, ThomasArrigo L K, Kaegi R, et al. Stabilization of Ferrihydrite and Lepidocrocite by Silicate during Fe(II)-Catalyzed Mineral Transformation: Impact on Particle Morphology and Silicate Distribution [J]. Environmental Science & Technology, 2022,56(9): 5929-5938. [59] Lovley D R, Holmes D E, Nevin K P. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Advances in microbial physiology, 2004,49:219-286. [60] Sulzberger B, Laubscher H. Reactivity of various types of iron(III) (hydr)oxides towards light-induced dissolution[J]. Marine Chemistry, 1995,50:103-115. [61] Borer P M, Sulzberger B, Reichard P, et al. Effect of siderophores on the light-induced dissolution of colloidal iron(III) (hydr)oxides[J]. Marine Chemistry, 2005,93:179-193. [62] Williams A G B, Scherer M M. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface[J]. Environmental Science & Technology, 2004,38(18):4782-4790. [63] 姚远,余光辉,滕辉.土壤铁氧化物-亚铁的相互作用及其环境影响研究进展[J]. 土壤, 2023,55(4):718-728. Yao Y, Yu G H, Teng H. Research Progress on the Interaction between Soil Iron Oxides and Ferrous Iron and Its Environmental Impact [J]. Soil, 2023,55(4):718-728. [64] Bu H L, Lei Q K,Tong H, et al. Humic acid controls cadmium stabilization during Fe(II)-induced lepidocrocite transformation.[J]. Science of The Total Environment, 2023, 861:160624. [65] Shi M Q, Min X B, Ke Y, et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides [J]. Science of The Total Environment, 2020,752:141930. [66] Alexandratos V G, Behrends T, Van Cappellen P. Fate of adsorbed U (VI) during sulfidization of lepidocrocite and hematite [J]. Environmental science & technology, 2017,51(4):2140-2150. [67] Wang X M , Peng J, Liang X L, et al. Effects of Mn2+, Ni2+, and Cu2+ on the formation and transformation of hydrosulfate green rust: Reaction processes and underlying mechanisms [J]. ACS Earth and Space Chemistry, 2019,3:519-530. [68] Li B, Deng C, Zhang D, et al. Bioremediation of Nitrate- and Arsenic-Contaminated Groundwater Using Nitrate-Dependent Fe(II) Oxidizing Clostridium sp. Strain pxl2[J]. Geomicrobiology Journal, 2016,33:185-193. [69] Randall S R, Sherman D M, Ragnarsdottir K V. Sorption of As(V) on green rust (Fe4(II) Fe2 (III)(OH) 12SO4· 3H2O) and lepidocrocite (γ-FeOOH): Surface complexes from EXAFS spectroscopy [J]. Geochimica et Cosmochimica Acta, 2001,65(7):1015-1023. [70] Shi M, Li J, Li X, et al. Reductive immobilization of hexavalent chromium by polysulfide-reduced lepidocrocite [J]. Industrial & Engineering Chemistry Research, 2019,58(27):11920-11926. [71] 于天仁,等.水稻土的物理化学[M]. 北京:科学出版社, 1983. Yu T R, et al. Physical Chemistry of Paddy Soils [M]. Beijing: Science Press, 1983. [72] Kang S, Amarasiriwardena D, Xing B S. Effect of dehydration on dicarboxylic acid coordination at goethite/water interface [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 318(1-3):275-284. [73] Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron [J]. Nature, 2012,483(7388):198-200. [74] Martyniuk H, Więckowska J. Adsorption of metal ions on humic acids extracted from brown coals [J]. Fuel Processing Technology, 2003, 84(1-3):23-36. [75] Fan T T, Wang Y J, Li C B, et al. Effect of organic matter on sorption of Zn on soil: elucidation by Wien effect measurements and EXAFS spectroscopy [J]. Environmental Science & Technology, 2016,50(6): 2931-2937. [76] Kaiser K, Guggenberger G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils [J]. Organic Geochemistry, 2000,31(8):711-725. [77] Chen J, Gu B H, Royer R A, et al. The roles of natural organic matter in chemical and microbial reduction of ferric iron [J]. Science of the Total Environment, 2003,307(1):167-178. [78] Liu J, Sheng A, Li X, et al. Understanding the importance of labile Fe(III) during Fe(II)-catalyzed transformation of metastable iron oxyhydroxides [J]. Environmental Science & Technology, 2022,56(6): 3801-3811. [79] Lehmann J, Solomon D, KIinyang J, et al. Spatial complexity of soil organic matter forms at nanometre scales [J]. Nature Geoscience, 2008, 1(4):238-242. [80] 王玉洁,雷琴凯,卜红玲,等.Fe(Ⅱ)aq与纤铁矿-胡敏酸复合物交互反应及其结构转化过程研究[J]. 生态环境学报, 2022,31(4):777-784. Wang Y J, Lei Q K, Bu H L, et al. Study on the Interactive Reaction between Aqueous Fe(Ⅱ) and Goethite-Humic Acid Complexes and Their Structural Transformation Process [J]. Journal of Environmental Sciences, 2022,31(4):777-784. [81] 余丹.铁氧化物异化还原驱动下的纤铁矿晶型转变及污染物降解特征与机制[D]. 陕西:西安建筑科技大学, 2016. Yu D. Study on the Crystalline Transformation of Goethite Driven by the Heterotrophic Reduction of Iron Oxides and the Characteristics and Mechanisms of Pollutant Degradation [D]. Shanxi: Xi'an University of Architecture and Technology, 2016. [82] 胡敏,李芳柏.土壤微生物铁循环及其环境意义[J]. 土壤学报, 2014,51(4):683-698. Hu M, Li F B. Soil Microbial Iron Cycle and Its Environmental Significance [J]. Acta Pedologica Sinica, 2014,51(4):683-698. [83] Roden E E, Kappler A, Bauer I, et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances [J]. Nature geoscience, 2010,3(6):417-421. [84] 刘娟,李晓旭,刘枫,等.铁氧化物-微生物界面电子传递的分子机制研究进展[J]. 矿物岩石地球化学通报, 2018,37(1):39-47. Liu J, Li X X, Liu F, et al. Recent Advances in the Molecular Mechanisms of Electron Transfer at the Iron Oxide-Microbe Interface [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018,37(1): 39-47. [85] O’Loughlin E J, Gorski C A, Scherer M M, et al. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (γ-FeOOH) and the formation of secondary mineralization products [J]. Environmental Science & Technology, 2010,44(12):4570-4576. [86] Bae S, Lee W. Biotransformation of lepidocrocite in the presence of quinones and flavins [J]. Geochimica et Cosmochimica Acta, 2013, 114:144-155. [87] 蒋若楠.Fe(Ⅱ)溶液催化还原2线水铁矿和纤铁矿的相变过程研究[D]. 辽宁:沈阳化工大学, 2021. Jiang R L. Study on the Phase Transformation Process of 2-Line Ferrihydrite and Goethite Catalyzed by Fe(Ⅱ) Solution [D]. Liaoning: Shenyang University of Chemical Technology, 2021. [88] Ona-Nguema G, Abdelmoula M, Jorand F, et al. Iron(II, III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction [J]. Environmental Science & Technology, 2002,36(1):16-20. [89] O'Loughlin E J, Larese-Casanova P, Scherer M, et al. Green rust formation from the bioreduction of γ-FeOOH (Lepidocrocite): comparison of several Shewanella species [J]. Geomicrobiology Journal, 2007,24(3/4):211-230. [90] 朱维晃,幺婷婷,黄廷林.纤铁矿微生物异化还原过程的动力学特征及其影响因素[J]. 环境科学学报, 2012,32(6):1348-1356. Zhu W H, Yao T T, Huang T L. Kinetic Characteristics of Microbial Heterotrophic Reduction of Goethite and Influencing Factors [J]. Journal of Environmental Sciences, 2012,32(6):1348-1356. [91] Sklute E C, Leopo D A, Neat K A, et al. Fe (III)(oxyhydr) oxide reduction by the thermophilic iron-reducing bacterium Desulfovulcanus ferrireducens [J]. Frontiers in Microbiology, 2023,14: 1272245. [92] Yuan C, Liu T, Li F, et al. Microbial iron reduction as a method for immobilization of a low concentration of dissolved cadmium [J]. Journal of environmental management, 2018,217:747-753. [93] Dia A, Lauga B, Davranche M, et al. Bacteria-mediated reduction of As (V)-doped lepidocrocite in a flooded soil sample [J]. Chemical Geology, 2015,406:34-44. [94] 李芳柏,徐仁扣,谭文峰,等.新时代土壤化学前沿进展与展望[J]. 土壤学报, 2020,57(5):1088-1104. Li F B, Xu R K, Tan W F, et al. Frontiers, Advances, and Prospects in Soil Chemistry in the New Era [J]. Acta Pedologica Sinica, 2020,57(5):1088-1104. [95] Cudennec Y, Lecerf A. Topotactic transformations of goethite and lepidocrocite into hematite and maghemite [J]. Solid State Sciences, 2005,7(5):520-529. [96] Cornell R M, Schwertmann U. Influence of organic anions on the crystallization of ferrihydrite [J]. Clays and Clay Minerals, 1979,27(6): 402-410. [97] Ristic M, Music S, Godec M. Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions [J]. Journal of alloys and compounds, 2006,417(1/2):292-299.