Research progress and future prospects of atmospheric environment models in China
WANG Ti-jian1, LI Meng-meng1, HAN Zhi-wei2, ZHANG Hua3, ZHOU Chun-hong4, XIE Min5, LI Shu1, ZHUANG Bing-liang1, WU Hao6, QU Ya-wei7, FU Tzung-may8, MA Dan-yang1, LI Ya-song1
1. School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; 2. Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 3. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China; 4. Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China; 5. School of Environment, Nanjing Normal University, Nanjing 210023, China; 6. Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210041, China; 7. College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing 211169, China; 8. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
摘要 This article offers a comprehensive overview of the history and key features of China’s atmospheric environment models, and also discusses the potential future research directions in this field. Since the 1960s, China has been engaged in the development and application study of atmospheric environment models, which have gone through different stages including transport diffusion models, acid deposition models, air quality models, climate-chemistry coupled models, and earth system models. China has developed its own atmospheric environment models with unique characteristics, improved international advanced models, and played a significant role in pollution prevention, environmental protection for major events, and climate change response. In the future, to improve the performance of atmospheric environment models in China and promote its open-source, more studies are required to focus on the formation mechanism of air pollution in model, retrieval of emission inventory, as well as development of dynamical emission model, multi-source observational data assimilation technique, ensemble forecast technique, unstructured grid system, and environment model based on artificial intelligence.
Abstract:This article offers a comprehensive overview of the history and key features of China’s atmospheric environment models, and also discusses the potential future research directions in this field. Since the 1960s, China has been engaged in the development and application study of atmospheric environment models, which have gone through different stages including transport diffusion models, acid deposition models, air quality models, climate-chemistry coupled models, and earth system models. China has developed its own atmospheric environment models with unique characteristics, improved international advanced models, and played a significant role in pollution prevention, environmental protection for major events, and climate change response. In the future, to improve the performance of atmospheric environment models in China and promote its open-source, more studies are required to focus on the formation mechanism of air pollution in model, retrieval of emission inventory, as well as development of dynamical emission model, multi-source observational data assimilation technique, ensemble forecast technique, unstructured grid system, and environment model based on artificial intelligence.
[1] Zhou T, Chen Z, Zou L, et al. Development of climate and earth system models in China: Past achievements and new CMIP6 results [J]. Acta Meteorologica Sinica, 2020,78(3):332-350. [2] 孙振海.一个考虑干沉积、衰减和风切变作用的气溶胶扩散数值模式 [D]. 南京:南京大学, 1997. Sun Z H. An aerosol dispersion model that considers the impacts of dry deposition, decay and wind shear [D]. Nanjing: Nanjing University, 1997. [3] 李世威,王建强,曾俊伟.一种改进的放射性气体扩散高斯预估模型算法 [J]. 计算机应用研究, 2012,29(1):123-126. Li S W, Wang J Q, Zeng J W. Improved Gaussian estimate model algorithm for radioactive gas diffusion [J]. Application Research of Computers, 2012,29(1):123-126. [4] 魏 薇,傅丽芳.基于改进高斯模型的哈尔滨市PM2.5扩散问题实证分析 [J]. 数学的实践与认识, 2014,44(22):205-211. Wei W, Fu L F. An empirical study on the problem of PM2.5 diffusion based on the improved Gauss model in Harbin city [J]. Mathematics in Practice and Theory, 2014,44(22):205-211. [5] Li Z K, Briggs G A. Simple PDF Models for convectively driven vertical diffusion [J]. Atmospheric Environment, 1988,22(1):55-74. [6] 朱忠湛,李宗恺.对流边界层中的一个双高斯型PDF扩散模式 [J]. 气象学报, 1995,1:74-81. Zhu Z Z, Li Z K. A double Gaussians PDF model on dispersion in convective boundary layers [J]. Acta Meteorologica Sinica, 1995,1: 74-81. [7] 徐大海,朱 蓉,李宗恺.论边界层中的大气扩散PDF模式 [J]. 气象学报, 1997,55(6):670-680. Xu D H, Zhu R, Li Z K. On the PDF model for atmospheric diffusion in boundary layer [J]. Acta Meteorologica Sinica, 1997,55(6):670-680. [8] 李宗恺,杜曙明.一个对流边界层中的随机扩散模式 [J]. 大气科学, 1993,(1):1-9. Li Z K, Du S M. A random walk diffusion model in the convective boundary layer [J]. Scientia Atmospherica Sinica, 1993,(1):1-9. [9] 于洪彬,蒋维楣.沿岸熏烟扩散的中尺度模拟系统 [J]. 环境科学学报, 1994,14(2):191-197. Yu H B, Jiang W M. A mesoscale simulation system for fumigation dispersion over shoreline area [J]. Acta Scientiae Circumstantiae, 1994, 14(2):191-197. [10] 杜曙明,李宗恺,金龙山.对流边界层中地面源的铅直扩散模拟 [J]. 大气科学, 1995,(3):367-374. Du S M, Li Z K, Jin L S. The simulation of vertical diffusion for the surface release in the convective boundary layer [J]. Scientia Atmospherica Sinica, 1995,(3):367-374. [11] 黄 晋.烟团轨迹模式及其在污染扩散研究中的应用 [D]. 南京:南京大学, 1994. Huang J. Plume trajectory model and its application in the air pollutant dispersion study [D]. Nanjing: Nanjing University, 1994. [12] 金龙山,刘 聪.修正的拉格朗日K模式及其在区域尺度中的应用 [J]. 气象科学, 1995,(2):73-81. Jin L S, Liu C. A revised lagrangian K model and its application on regional-scale [J]. Scientia Meteorologica Sinica, 1995,(2):73-81. [13] 谷 清.轨迹烟流模式计算方法 [C]//第十一届全国大气环境学术会议,济南, 2004:55-59. Gu Q. Calculation method of trajectory plume model [C]//The 11th National Conference of Atmospheric environment, Jinan, 2004:55-59. [14] 汪小钦.复杂地形下大气边界层结构和大气扩散的数值模拟 [D]. 南京:南京大学, 1997. Wang X. Numerical simulation of the boundary layer structure and atmospheric dispersion under complex trrrain conditions [D]. Nanjing: Nanjing University, 1997. [15] 刘 丽,王体健,蒋自强,等.东南沿海生物气溶胶的扩散模拟研究 [J]. 环境科学学报, 2012,32(11):2670-2683. Liu L, Wang T J, Jiang Z Q, et al. Numerical study on bioaerosol dispersion over southeast coast of China [J]. Acta Scientiae Circumstantiae, 2012, 32(11):2670-2683. [16] 雷孝恩,贾新媛,袁素珍,等.重庆酸雨分布的一个数值模拟 [J]. 大气科学, 1985,(3):276-284. Lei X E, Jia X Y, Yuan S Z, et al. A numerical simulation of distribution on the acid precipitation in Chongqing area [J]. Scientia Atmospherica Sinica, 1985,(3):276-284. [17] 盛裴轩,毛节泰.我国大气污染物远距离传输的估计——Ⅰ: 轨迹分析 [J]. 气象学报, 1987,45(1):65271. Sheng P X, Mao J T. The estimation of the long-range transport of air pollutants in China-1. Trajectory analysis [J]. Acta Meteorologica Sinica, 1987,45(1):65271. [18] 殷达中,李宗恺.一个远距离输送-化学转化模式及其在酸雨研究中的应用 [J]. 环境科学学报, 1993,(1):11-21. Yin D Z, Li Z K. A long-range transport-chemical transformation model and its application in the study of acid deposition [J]. Acta Scientiae Circumstantiae, 1993,(1):11-21. [19] 毛节泰.广东、广西地区酸沉降统计模式的研究 [J]. 环境科学学报, 1992,(1):28-36. Mao J T. A statistic model on the range of acid deposition [J]. Acta Scientiae Circumstantiae, 1992,(1):28-36. [20] 秦 瑜,修艾军.一个欧拉型污染物沉降的中尺度模式 [J]. 北京大学学报(自然科学版), 1992,(5):602-612. Qin Y, Xiu A J. An Eulerian meso-scale model on deposition of pollutants [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1992,(5):602-612. [21] 贾新媛.区域酸沉降模式 [J]. 大气科学, 1993,(6):732-740. Jia X Y. A regional scale model of acid deposition [J]. Scientia Atmospherica Sinica, 1993,(6):732-740. [22] Huang M Y, Wang Z F, He D Y, et al. Modeling studies on sulfur deposition and transport in East Asia [J]. Water Air and Soil Pollution, 1995,85(4):1921-1926. [23] 郝吉明,周学龙,傅立新,等.我国东部地区硫沉降模拟研究——模式开发和性能分析 [J]. 中国环境科学, 1996,(4):241-245. Hao J M, Zhou X L, Fu L X, et al. Sulfuric deposition modeling research in the east part of China-model development and performance analysis [J]. China Environmental Science, 1996,(4):241-245. [24] 王体健,李宗恺,南 方.区域酸性沉降的数值研究—— Ⅰ.模式 [J]. 大气科学, 1996,20(5):606-614. Wang T J, Li Z K, Nan F. Numerical modeling of regional acid deposition-Part I: Model [J]. Scientia Atmospherica Sinica, 1996, 20(5):606-614. [25] 王体健,李宗恺,南 方.区域酸性沉降的数值研究Ⅱ.个例模拟和试验 [J]. 大气科学, 1996,20(6):720-734. Wang T J, Li Z K, Nan F. Numerical modeling of regional acid deposition-Part II: Case study and numerical experiment [J]. Scientia Atmospherica Sinica, 1996,20(6):720-734. [26] 王自发,黄美元,何东阳,等.关于我国和东亚酸性物质的输送研究——I.三维欧拉污染物输送实用模式 [J]. 大气科学, 1997,21(3):366-378. Wang Z F, Huang M Y, He D Y, et al. Studies on transport of acid substance in China and East Asia Part I: 3-D Eulerian transport model for pollutants [J]. Scientia Atmospherica Sinica, 1997,21(3):366-378. [27] 高会旺,黄美元,徐华英,等.欧拉型区域硫沉降模式研究 [J]. 大气科学, 1997,21(5):615-626. Gao H W, Huang M Y, Xu H Y, et al. A study of Eulerian regional sulfur deposition model [J]. Scientia Atmospherica Sinica, 1997,21(5): 615-626. [28] Wang T J, Jin L S, Li Z K, et al. A modeling study on acid rain and recommended emission control strategies in China [J]. Atmospheric Environment, 2000,34(26):4467-4477. [29] 雷孝恩,张美根.大气污染数值预报基础和模式 [M]. 北京:北京气象出版社, 1998:321. Lei X E, Zhang M G. Basis and models for the numerical prediction of air pollution [M]. Beijing: Beijing Meteorological Press, 1998:321. [30] 韩志伟,杜世勇,雷孝恩,等.城市空气污染数值预报模式系统及其应用 [J]. 中国环境科学, 2002,(3):11-15. Han Z W, Du S Y, Lei X E, et al. Numerical model system of urban air pollution prediction and its application [J]. China Environmental Science, 2002,(3):11-15. [31] 徐大海,朱 蓉.大气平流扩散的箱格预报模型与污染潜势指数预报 [J]. 应用气象学报, 2000,11(1):1-12. Xu D H, Zhu R. Atmospheric advective and dispersion nonstatic box-model for prediction of the potential index of airborne pollutant [J]. Quarterly Journal of Applied Meteorology, 2000,11(1):1-12. [32] 朱 蓉,徐大海,孟燕君,等.城市空气污染数值预报系统CAPPS及其应用 [J]. 应用气象学报, 2001,(3):267-278. Zhu R, Xu D H, Meng Y J, et al. City air pollution numerical prediction system and its application [J]. Quarterly Journal of Applied Meteorology, 2001,(3):267-278. [33] 房小怡,蒋维楣,吴 涧,等.城市空气质量数值预报模式系统及其应用 [J]. 环境科学学报, 2004,24(1):111-115. Fang X Y, Jiang W M, Wu J, et al. Study on the development of numerical model system to predict urban air quality [J]. Acta Scientiae Circumstantiae, 2004,24(1):111-115. [34] 王自发,谢付莹,王喜全,等.嵌套网格空气质量预报模式系统的发展与应用 [J]. 大气科学, 2006,30(5):778-790. Wang Z F, Xie F Y, Wang X Q, et al. Development and application of nested air quality prediction modeling system [J]. Chinese Journal of Atmospheric Sciences, 2006,30(5):778-790. [35] Gong S L, Zhang X Y. CUACE/Dust-an integrated system of observation and modeling systems for operational dust forecasting in Asia [J]. Atmospheric Chemistry and Physics, 2008,8(9):2333-2340. [36] Zhou C H, Gong S L, Zhang X Y, et al. Towards the improvements of simulating the chemical and optical properties of Chinese aerosols using an online coupled model-CUACE/Aero [J]. Tellus Series B-Chemical and Physical Meteorology, 2012,64. [37] Zhou C H, Gong S L, Zhang X Y, et al. Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust [J]. Atmospheric Chemistry and Physics, 2008,8(4):787-798. [38] Wang H, Gong S L, Zhang H L, et al. A new-generation sand and dust storm forecasting system GRAPES_CUACE/Dust: Model development, verification and numerical simulation [J]. Chinese Science Bulletin, 2010,55(7):635-649. [39] Zhang L, Gong S L, Zhao T L, et al. Development of WRF/CUACE v1.0model and its preliminary application in simulating air quality in China [J]. Geoscientific Model Development, 2021,14(2):703-718. [40] An X Q, Zhai S X, Jin M, et al. Development of an adjoint model of GRAPES-CUACE and its application in tracking influential haze source areas in north China [J]. Geoscientific Model Development, 2016,9(6):2153-2165. [41] Niu T, Gong S L, Zhu G F, et al. Data assimilation of dust aerosol observations for the CUACE/dust forecasting system [J]. Atmospheric Chemistry and Physics, 2008,8(13):3473-3482. [42] Wang P, Wang H, Wang Y Q, et al. Inverse modeling of black carbon emissions over China using ensemble data assimilation [J]. Atmospheric Chemistry and Physics, 2016,16(2):989-1002. [43] Wang H, Shi G Y, Zhang X Y, et al. Mesoscale modelling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its near surrounding region-Part 2: Aerosols' radiative feedback effects [J]. Atmospheric Chemistry and Physics, 2015,15(6):3277-3287. [44] Wang H, Zhang X Y, Gong S L, et al. Radiative feedback of dust aerosols on the East Asian dust storms [J]. Journal of Geophysical Research-Atmospheres, 2010,115,doi:10.1029/2009JD013430. [45] Zhou C, Zhang X, Gong S, et al. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system [J]. Atmospheric Chemistry and Physics, 2016,16(1):145-160. [46] 王体健,李 树,庄炳亮,等.区域大气环境-化学-气候模拟 [M]. 北京:气象出版社, 2017:346. Wang T J, Li S, Zhuang B L, et al. Regional atmospheric environment-chemistry-climate model [M]. Beijing: Meteorological Press, 2017,346. [47] 罗 干,徐北瑶,王体健,等.区域大气环境模拟系统RegAEMS的研究进展 [J]. 中国环境科学, 2022,42(10):4571-4580. Luo G, Xu B Y, Wang T J, et al. Development of regional atmospheric environment modeling system (RegAEMS) [J]. China Environmental Science, 2022,42(10):4571-4580. [48] 王体健,高太长,张宏昇,等.新中国成立70年来的中国大气科学研究:大气物理与大气环境篇 [J]. 中国科学:地球科学, 2019,49(12): 1833-1874. Wang T J, Gao T C, Zhang H S, et al. Review of Chinese atmospheric science research over the past 70years: Atmospheric physics and atmospheric environment [J]. China Science: Earth Science, 2019,49 (12):1833-1874. [49] Xie N H, Wang T J, Xie X D, et al. The regional climate-chemistry-ecology coupling model RegCM-Chem (v4.6)-YIBs (v1.0): development and application [J]. Geoscientific Model Development, 2024,17(8):3259-3277. [50] 王婷婷,王体健,庄炳亮,等.影响大气汞化学过程的敏感因子分析 [J]. 环境科学学报. 2010,30(2):390-401. Wang T T, Wang T J, Zhuan B L, et al. Sensitivity analysis of factors affecting atmospheric mercury chemistry [J]. Acta Scientiae Circumstantiae, 2010,30(2):390-401. [51] 朱佳雷,王体健,王婷婷.中国地区大气汞沉降速度研究 [J]. 生态毒理学报, 2014,9(5):862-873. Zhu J L, Wang T J, Wang T T. Study on dry deposition velocity of atmospheric mercury over China [J]. Asian Journal of Ecotoxicology, 2014,9(5):862-873. [52] 陈璞珑,王体健,谢晓栋,等.基于数值模式的细颗粒物来源解析 [J]. 科学通报, 2018,63(18):1829-1838. Chen P L, Wang T J, Xie X D, et al. Source apportionment of fine partilces based on combined numerical model and receptor model [J]. Chinese Science Bulletin, 2018,63(18):1829-1838. [53] 王德羿,王体健,韩军彩,等.“2+ 26”城市大气重污染下PM2.5来源解析 [J]. 中国环境科学, 2020,40(1):92-99. Wang D Y, Wang T J, Han J C, et al. Source apportionment of PM2.5 under heavy air pollution conditions in "2+26" cities [J]. China Environmental Science, 2020,40(1):92-99. [54] 罗 干,王体健,李蒙蒙,等.区域大气环境模式RegAEMS中二次气溶胶的改进模拟研究 [J]. 中国环境科学, 2021,41(10):4541-4548. Luo G, Wang T J, Li M M, et al. Improved simulation of secondary aerosol in the regional atmospheric environment modeling system RegAEMS [J]. China Environmental Science, 2021,41(10):4541-4548. [55] Lin H P, Feng X, Fu T M, et al. WRF-GC (v1.0): online coupling of WRF (v3.9.1.1) and GEOS-Chem (v12.2.1) for regional atmospheric chemistry modeling-Part 1: Description of the one-way model [J]. Geoscientific Model Development, 2020,13(7):3241-3265. [56] Feng X, Lin H P, Fu T M, et al. WRF-GC (v2.0): online two-way coupling of WRF (v3.9.1.1) and GEOS-Chem (v12.7.2) for modeling regional atmospheric chemistry-meteorology interactions [J]. Geoscientific Model Development, 2021,14(6):3741-3768. [57] 王体健,王勤耕,金龙山,等.空气质量和雾霾天气预报方法及应用 [M]. 北京:气象出版社, 2021,327. Wang T J, Wang Q G, Jin L S, et al. Numerical prediction methods for air pollution and haze and their applications. Meteorological Press, Beijing, 2021,327. [58] 罗 淦,王自发.全球环境大气输送模式(GEATM)的建立及其验证 [J]. 大气科学, 2006,30(3):504-518. Luo G, Wang Z F. A global environmental atmospheric transport model (GEATM): Model description and validation [J]. Chinese Journal of Atmospheric Sciences, 2006,30(3):504-518. [59] 王体健,谢晓栋,庄炳亮,等.区域气候-化学-生态耦合模式与模拟 [M]. 气象出版社, 北京, 2022,418. Wang T J, Xie X D, Zhuang B L, et al. Regional climate-chemistry-ecosystem coupled model and simulation [M]. Meteorological Press, Beijing, 2022,418. [60] Fu C B, Wang S Y, Xiong Z, et al. Regional climate model intercomparison project for Asia [J]. Bulletin of the American Meteorological Society, 2005,86(2):257-266. [61] Han Z W. Direct radiative effect of aerosols over East Asia with a Regional coupled Climate/Chemistry model [J]. Meteorologische Zeitschrift, 2010,19(3):287-298. [62] Han Z W, Li J W, Xia X G, et al. Investigation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate-chemistry-aerosol model [J]. Atmospheric Environment, 2012,54:688-699. [63] Han Z W, Li J W, Yao X H, et al. A regional model study of the characteristics and indirect effects of marine primary organic aerosol in springtime over East Asia [J]. Atmospheric Environment, 2019,197: 22-35. [64] Li J W, Han Z W. Aerosol vertical distribution over east China from RIEMS-Chem simulation in comparison with CALIPSO measurements [J]. Atmospheric Environment, 2016,143:177-189. [65] Li J W, Han Z W, Surapipith V, et al. Direct and indirect effects and feedbacks of biomass burning aerosols over Mainland Southeast Asia and South China in springtime [J]. Science of the Total Environment, 2022,842,doi:10.1016/j.scitotenv.2022.156949. [66] Li J W, Han Z W, Wu Y F, et al. Aerosol radiative effects and feedbacks on boundary layer meteorology and PM chemical components during winter haze events over the Beijing-Tianjin-Hebei region [J]. Atmospheric Chemistry and Physics, 2020,20(14):8659-8690. [67] Liang M J, Han Z W, Li J W, et al. Radiative effects and feedbacks of anthropogenic aerosols on boundary layer meteorology and fine particulate matter during the COVID-19lockdown over China [J]. Science of the Total Environment, 2023,862,doi:10.1016/j.scitotenv. 2022.160767. [68] 王体健,谢 旻,高丽洁,等.一个区域气候-化学耦合模式的研制及初步应用 [J]. 南京大学学报:自然科学版, 2004,40(6):711-727. Wang T J, Xie M, Gao L J, et al. Development and preliminary application of a coupled regional climate-chemistry model system [J]. Journal of Nanjing University (Natural Sciences), 2004,40(6):711-727. [69] Li S, Wang T J, Zhuang B L, et al. Indirect radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China [J]. Advances in Atmospheric Sciences, 2009,26(3):543-552. [70] Wang T J, Li S, Shen Y, et al. Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system [J]. Journal of Geophysical Research-Atmospheres, 2010,115,doi:10.1029/2009JD013264. [71] Zhuang B L, Jiang F, Wang T J, et al. Investigation on the direct radiative effect of fossil fuel black-carbon aerosol over China [J]. Theoretical and Applied Climatology, 2011,104(3/4):301-312. [72] Zhuang B L, Li S, Wang T J, et al. Direct radiative forcing and climate effects of anthropogenic aerosols with different mixing states over China [J]. Atmospheric Environment, 2013,79:349-361. [73] Zhuang B L, Liu L, Shen F H, et al. Semidirect radiative forcing of internal mixed black carbon cloud droplet and its regional climatic effect over China [J]. Journal of Geophysical Research-Atmospheres, 2010,115. [74] Zhuang B L, Liu Q, Wang T J, et al. Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol over China [J]. Theoretical and Applied Climatology, 2013,114(3/4):651-672. [75] Ma D Y, Wang T J, Wu H, et al. The effect of anthropogenic emission, meteorological factors, and carbondioxide on the surface ozone increase in China from 2008 to 2018 during theEast Asia summer monsoon season [J]. Atmospheric Chemistry and Physics, 2023,23(11): 6525-6544. [76] Ma D Y, Wang T J, Xu B Y, et al. The mutual interactions among ozone, fine particulate matter, and carbon dioxide on summer monsoon climate in East Asia [J]. Atmospheric Environment, 2023,299. [77] Xie X D, Wang T J, Yue X, et al. Effects of atmospheric aerosols on terrestrial carbon fluxes and CO2 concentrations in China [J]. Atmospheric Research, 2020,237. [78] Xie X D, Wang T J, Yue X, et al. Numerical modeling of ozone damage to plants and its effects on atmospheric CO2 in China [J]. Atmospheric Environment, 2019,217. [79] Xu B Y, Wang T J, Gao L B, et al. Impacts of meteorological factors and ozone variation on crop yields in China concerning carbon neutrality objectives in 2060 [J]. Environmental Pollution, 2023,317. [80] Xu B Y, Wang T J, Ma D Y, et al. Impacts of regional emission reduction and global climate change on air quality and temperature to attain carbon neutrality in China [J]. Atmospheric Research, 2022,279. [81] Zhang H, Wang Z L, Wang Z Z, et al. Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system [J]. Climate Dynamics, 2012,38(7/8):1675-1693. [82] Wang Z L, Zhang H, Lu P. Improvement of cloud microphysics in the aerosol-climate model BCC_AGCM2.0.1_CUACE/Aero, evaluation against observations, and updated aerosol indirect effect [J]. Journal of Geophysical Research-Atmospheres, 2014,119(13). [83] Zhang H, Jing X, Li J. Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1 [J]. Geoscientific Model Development, 2014,7(3):737-754. [84] Zhang H, Chen Q, Xie B. A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015,150:76-86. [85] Wang Z L, Zhang H, Jing X W, et al. Effect of non-spherical dust aerosol on its direct radiative forcing [J]. Atmospheric Research, 2013,120:112-126. [86] Wang Z L, Zhang H, Li J N, et al. Radiative forcing and climate response due to the presence of black carbon in cloud droplets [J]. Journal of Geophysical Research-Atmospheres, 2013,118(9):3662-3675. [87] Wang Z L, Zhang H, Shen X S. Radiative Forcing and Climate Response Due to Black Carbon in Snow and Ice [J]. Advances in Atmospheric Sciences, 2011,28(6):1336-1344. [88] Qi A, Zhang H, Zhao S Y, et al. Updated simulation of tropospheric ozone and its radiative forcing over the globe and China based on a newly developed chemistry-climate model [J]. Journal of Meteorological Research, 2022,36(4):553-573. [89] Lu X, Zhang L, Wu T W, et al. Development of the global atmospheric chemistry general circulation model BCC-GEOS-Chem v1.0: model description and evaluation [J]. Geoscientific Model Development, 2020,13(9):3817-3838. [90] He B, Bao Q, Wang X, et al. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation [J]. Advances in Atmospheric Sciences, 2019,36(8):771-778. [91] Li J, Bao Q, Liu Y, et al. Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics [J]. Journal of Advances in Modeling Earth Systems, 2019,11(4):1117-1136. [92] Xin X, Wu T, Zhang J, et al. Introduction of BCC models and its participation in CMIP6 [J]. Progressus Inquisitiones de Mutatione Climatis, 2019,15(5):533-539. [93] Wu T, Lu Y, Fang Y, et al. The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5to CMIP6 [J]. Geoscientific Model Development, 2019,12(4):1573-1600. [94] Rong X, Li J, Chen H, et al. Introduction of CAMS-CSM model and its participation in CMIP6 [J]. Progressus Inquisitiones de Mutatione Climatis, 2019,15(5):540-544. [95] Song Z, Bao Y, Qiao F. Introduction of FIO-ESM v2.0 and its participation plan in CMIP6 experiments [J]. Progressus Inquisitiones de Mutatione Climatis, 2019,15(5):558-565. [96] Cheng W, Dan L, Deng X, et al. Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios [J]. Scientific Data, 2022,9(1):https://doi.org/10.1038/s41597-022-01196-7. [97] Lin Y, Huang X, Liang Y, et al. The Community Integrated Earth System Model (CIESM) from Tsinghua University and its plan for CMIP6experiments [J]. Progressus Inquisitiones de Mutatione Climatis, 2019,15(5):545-550. [98] Cao J, MaL, Li J, et al. Introduction of NUIST-ESM model and its CMIP6activities [J]. Progressus Inquisitiones de Mutatione Climatis, 2019,15(5):566-570. [99] Lee W L, Wang Y C, Shiu C J, et al. Taiwan earth system model version 1: description and evaluation of mean state [J]. Geoscientific Model Development, 2020,13(9):3887-3904. [100] Chai Z, Zhang H, Zhang M, et al. China's earthLab-forefront of earth system simulation research [J]. Advances in Atmospheric Sciences, 2021,38(10):1611-1620. [101] 王自发,魏 颖,陈学舜,等.一个适用于地球系统模式(CAS-ESM)的在线气溶胶与大气化学分量模式(IAP-AACM)的发展与评估 [J]. 气候与环境研究, 2020,25(1):1-18. Wang Z F, Wei Y, Chen X S, et al. Development and evaluation of the online aerosol and atmospheric chemistry model for the Chinese Academy of Sciences Earth System Model (CAS-ESM) [J]. Climatic and Environmental Research, 2020,25(1):1-18.