Abstract:The paper proposed a model for estimating the carbon emissions of provincial expressway network by toll collection data. In consideration of a theoretical fuel consumption model and the factors such as vehicle type differences, total mass, and vehicle operating conditions, it achieved precise calculation of carbon emissions at the section level. Based on toll collection data, the average speeds of section were calculated through data cleaning and aggregation, and TransCAD was used to achieve traffic allocation. By using PYTHON, the Dijkstra algorithm to determine the actual path matrix was implemented, combining these with the NEDC driving cycle to construct the vehicle driving cycle. It calculated fuel consumption and converted into carbon emissions by inferring specific fuel consumption through the MOVES database. Taking the Ningxia Hui Autonomous Region as a case study, we calculated the monthly carbon emissions of provincial highways and analyzed the distribution characteristics of carbon emissions. The feasibility of the model was verified through MOVES and COPERT simulations and comparison with various fuel consumption data released by the National Bureau of Statistics. The results show that in September 2019, the total carbon emissions of expressways in Ningxia Hui Autonomous Region were 210400 tons, with a passenger vehicle to truck distribution ratio of 1:3.92. Heavy trucks with 5axles or more accounted for 82.34% of the total carbon emissions of trucks. Passenger cars accounted for 83.18% of the total carbon emissions of passenger vehicles. Carbon emissions were mainly concentrated on the road network connecting provincial capital cities and surrounding prefecture level cities. Calculated emissions of the model were 15.86% above those of MOVES and 32.16% above COPERT’s, with a deviation of merely 4.29% from the national and local statistical department’s carbon emission converted by fuel consumption. The paper could reveal the carbon emissions of each vehicle type on provincial expressways, and the distribution characteristics of carbon emissions on each road section.
闫晟煜, 王钊龙, 武瑾, 白书铭, 孙健. 省域高速公路网车辆碳排放量测算方法[J]. 中国环境科学, 2024, 44(12): 7095-7104.
YAN Sheng-yu, WANG Zhao-long, WU Jin, BAI Shu-ming, SUN Jian. Estimation model of vehicle carbon emission for provincial expressway networks.. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(12): 7095-7104.
[1] 刘淳森,曲建升,葛钰洁,等.基于LSTM模型的中国交通运输业碳排放预测[J]. 中国环境科学, 2023,43(5):2574-2582. Liu C S, Qu J S, Ge Y J, et al. LSTM model-based prediction of carbon emissions from China's transportation sector [J]. China Environmental Science, 2023,43(5):2574-2582. [2] 吕晨,张哲,陈徐梅,等.中国分省道路交通二氧化碳排放因子[J]. 中国环境科学, 2021,41(7):3122-3130. Lü C, Zhang Z, Chen X, et al. Study on CO2 emission factors of road transport in Chinese provinces [J]. China Environmental Science, 2021,41(7):3122-3130. [3] 陈荫三,肖润谋,闫晟煜,等.2019中国高速公路运输量统计调查分析报告[M]. 北京:人民交通出版社股份有限公司, 2020,1. Chen Y S, XIAO R M, Yan S Y, et al. Statistics and analysis report of expressway of China in 2019[M]. Beijing: China Communication Press Co., Ltd, 2020,1. [4] Li Y, Lü C, Yang N, et al. A study of high temporal-spatial resolution greenhouse gas emissions inventory for on-road vehicles based on traffic speed-flow model:a case of Beijing [J]. Journal of Cleaner Production, 2020,277. [5] Kholod N, Evans M, Gusev E, et al. A methodology for calculating transport emissions in cities with limited traffic data:case study of diesel particulates and black carbon emissions in Murmansk [J]. Science of the Total Environment, 2016,547:305-313. [6] 陈操操,刘春兰,田刚,等.城市温室气体清单评价研究[J]. 环境科学, 2010,31(11):2780-2787. Chen C C, Liu C L, Tian G, et al. Progress in research of urban greenhouse gas emission inventory [J]. Environmental Science, 2010,31(11):2780-2787. [7] 武翠芳,熊金辉,吴万才,等.基于STIRPAT模型的甘肃省交通碳排放测算及影响因素分析[J]. 冰川冻土, 2015,37(3):826-834. Wu C F, Xiong J H, Wu W C, et al. Calculation and effect factor analysis of transport carbon emission in Gansu Province based on STIRPAT model [J]. Journal of Glaciology and Geocryology, 2015, 37(3):826-834. [8] 杨青,郭露,刘星星,等.中国省域交通碳排放空间关联格局的驱动特征[J]. 中国环境科学, 2024,44(2):1171-1184. Yang Q, Guo L, Liu X X, et al. Driving characteristics of the spatial correlation pattern of carbon emissions from provincial transportation in China [J]. China Environmental Science, 2024,44(2):1171-1184. [9] 孙彦明,杨怡乐,李清立.“双碳”目标下中国省域交通碳排放强度的时空演变分析[J]. 宏观经济研究, 2023,(11):48-61. Sun Y M, Yang Y L, Li Q L. An analysis on spatial-temporal evolution of China’s provincial transportation carbon emission intensity under the goal of carbon peaking and carbon neutrality [J]. Macroeconomics, 2023,(11):48-61. [10] Wang T, Li H, Zhang J, et al. Influencing factors of carbon emission in China’s road freight transport [J]. Procedia - Social and Behavioral Sciences, 2012,43. [11] 贾璐宇,王克.碳中和背景下中国交通部门低碳发展转型路径[J]. 中国环境科学, 2023,43(6):3231-3243. Jia L Y, Wang K. Low-carbon transition pathways for China's transportation sector under the background of carbon neutrality [J]. China Environmental Science, 2023,43(6):3231-3243. [12] Peng T, Ou X, Yuan Z, et al. Development and application of China provincial road transport energy demand and GHG emissions analysis model [J]. Applied Energy, 2018,222:313-328. [13] Sim S, Oh J, Jeong B. Measuring greenhouse gas emissions for the transportation sector in Korea [J]. Annals of Operations Research, 2015,230:129-151. [14] 谢林芳.高速公路限制速度对机动车碳排放的影响[D]. 西安:长安大学, 2021. Xie L F. Effect of posted speed limit of expressway on motor vehicle carbon emissions [D]. Xi'an:Chang'an University, 2021. [15] 齐绍洲,付坤.低碳经济转型中省级碳排放核算方法比较分析[J]. 武汉大学学报(哲学社会科学版), 2013,66(2):85-92,129. Qi S Z, Fu K. Comparative analysis of the accounting method of provincial carbon emission during the low carbon transition [J]. Wuhan University Journal (Philosophy & Social Science), 2013,66(2): 85-92,129. [16] GB/T 2589-2020综合能耗计算通则[S]. GB/T 2589-2020 General rules for calculation of the comprehensive energy consumption [S]. [17] 中华人民共和国国家发展和改革委员会.省级温室气体清单编制指南(试行) [R]. 2011:15-18. National Development and Reform Commission.Guidelines for the preparation of provincial greenhouse gas inventory (Trial) [R]. 2011:15-18. [18] 余志生.汽车理论(第6版) [M]. 北京:机械工业出版社, 2018:47-59. Yu Z S.Automotive theory (6th Edition) [M]. Beijing: China Machine Press, 2018:47-59. [19] 颜伏伍.汽车发动机原理(第二版) [M].北京:人民交通出版社股份有限公司, 2014:14. Yan F W.Principles of automotive engines (second edition) [M]. Beijing: China Communications Press Co.,Ltd., 2014:14. [20] 曼佛雷德•米奇克,亨宁•瓦伦托维兹.汽车动力学[M]. 陈荫三,余强,译.北京:清华大学出版社, 2019. Manfred Mitschke, Henning Wallentowitz. Dynamik der kraftfahrzeuge [M]. Translated by Chen Y S, Yu Q. Beijing: Tsinghua University Press, 2019. [21] 冯玉松.MOVES-西安排放模型的建立及污染评估应用[D]. 西安:长安大学, 2019. Feng Y S. Establishment of MOVES-Xi’an emission model and its application of pollution evaluation [D]. Xi’an: Chang’an University, 2019. [22] 林培群,张扬,罗芷晴,等.融合多源数据的高速公路路段车流碳排放精细测算方法[J]. 华南理工大学学报(自然科学版), 2023,51(7):100-108. Lin P Q, Zhang Y, Luo Z Q, et al. Precise calculation method of traffic carbon emission in expressway segment integrating multi-source data [J]. Journal of South China University of Technology (Natural Science Edition), 2023,51(7):100-108. [23] 王振喜,冯朋朋,王谋举,等.WLTC工况下颗粒物排放特性研究及优化[J]. 汽车技术, 2020,(10):27-32. Wang Z X, Feng P P, Wang M J, et al. Characteristics study and optimization of particulate emission based on WLTC [J]. Automobile Technology, 2020,(10):27-32. [24] 赵向阳,吴启斌.基于CLTC工况的纯电动汽车单踏板再生制动系统经济性研究[J]. 机械传动, 2021,45(5):26-31. Zhao X Y, Wu Q B. Research on economic performance of single pedal brake for pure electric vehicles based on CLTC working condition [J]. Journal of Mechanical Transmission, 2021,45(5):26-31. [25] 赵转转,程长,闫晟煜,等.基于收费数据的高速公路车辆运行速度算法[J]. 公路, 2023,68(6):298-303. Zhao Z Z, Cheng Z, Yan S Y, et al. Algorithm of vehicle speed on expressway based on toll collection data [J]. Highway, 2023,68(6): 298-303. [26] 杨孟,许宏科,钱超.基于收费数据的路网运行指标提取及可视化[J]. 公路, 2019,64(10):186-193. Yang M, Xu H K, Qian C. Toll data based traffic census indicator extraction and visualization [J]. Highway, 2019,64(10):186-193. [27] Bosi T, Bigi F, D’ariano A, et al. Optimal management of full train load services in the shunting yard:A comprehensive study on shunt-in shunt-out policies [J]. Computers Industrial Engineering, 2024,188: 109865. [28] 王宪彬,施树明,裴玉龙.面向商用车行驶工况优化设计的高速公路工况识别[J]. 中国公路学报, 2022,35(6):355-362. Wang X B, Shi S M, Pei Y L. Identification of expressway driving cycles for optimization of commercial vehicle driving cycles [J]. China Journal of Highway and Transport, 2022,35(6):355-362. [29] 闫晟煜,肖润谋,杨铭.在地公路货物运输量统计方法[J]. 交通运输工程学报, 2020,20(6):210-217. Yan S Y, Xiao R M, Yang M. Statistical approach for the region- oriented volume of freight transport on highway [J]. Journal of Traffic and Transportation Engineering, 2020,20(6):210-217. [30] 李荔,张洁,赵秋月,等.基于COPERT模型的江苏省机动车时空排放特征与分担率[J]. 环境科学, 2018,39(9):3976-3986. Li L, Zhang J, Zhao Q Y, et al. Vehicle exhaust emission characteristics and their contributions in Jiangsu Province [J]. Environmental Science, 2018,39(9):3976-3986. [31] 冯红晶.基于VSP的山区高速公路商用车油耗计算模型研究[D]. 西安:长安大学, 2016. Feng H J. Study on fuel consumption algorithm model of commercial vehicles based on VSP for mountainous highway [D]. Xi’an: Chang’an University, 2016. [32] 刘桂彬,刘志超,陆春,等.48V车型燃料消耗量标准分析及试验研究[J]. 汽车工程, 2019,41(6):757-762. Liu G B, Liu Z C, Lu C, et al. Standard analysis and experimental study on energy consumption of 48V vehicle [J]. Automotive Engineering, 2019,41(6):757-762. [33] 尚勋,王微.基于JT/T 711—2016标准测试营运客车燃料消耗量[J]. 小型内燃机与车辆技术, 2022,51(3):68-72. Shang X, WANG W. Testing fuel consumption of operating passenger bus based on JT/T 711—2016[J]. Small internal combustion engine and vehicle technique, 2022,51(3):68-72. [34] 朱江苏,史祥东,甄雷,等.基于交通部燃料消耗量标准的动力总成匹配方法研究[J]. 农业装备与车辆工程, 2024,62(5):128-131. Zhu J S, Shi X D, Zhen L, et al. Study of powertrain matching methods based on fuel consumption by ministry of transport [J]. Agricultural Equipment & Vehicle Engineering, 2024,62(5):128-131. [35] 郭瑞玲,苑林,谢东明,等.载货汽车燃油经济性与整车质量的相关性研究[J]. 汽车工程, 2015,37(6):613-616. Guo R L, Yuan L, Xie D M, et al. A study on the correlation between the fuel economy and total mass of trucks [J]. Automotive Engineering, 2015,37(6):613-616. [36] 孙健,张颖,薛睿,等.基于移动监测的城市道路交通碳排放形成机理——以上海市为例[J]. 中国公路学报, 2017,30(5):122-131. Sun J, Zhang Y, Xue R, et al. Formation Mechanism of urban traffic carbon emissions based on mobile monitoring: case study of Shanghai [J]. China Journal of Highway Transportation, 2017,30(5):122-131.