Remediation of saline-alkali soil microecology by a combined system of mycorrhizal fungus-Bacillus subtilis
YE Bin-yu1, YU Yue1, HE Pei-yi2, XIE Qi-xiao1, YANG Rui-ying3, WU Jia-rui1, LIU Yi-lin1, LIN Zi-ran1, LAI Wei-yu1, XU Ling-yi1, LIU Peng1, HONG Hua-chang3
1. College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; 2. College of Chemistry and Materials Science, Zhejiang Normal University Jinhua, 321004, China; 3. College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
Abstract:To alleviate the harmful effects of salinization on soil micro-ecological environments, this study investigates the restorative effects of a dual microbial system on saline-alkaline soil. The experiment used the tomato variety 'Zhongshu No. 4' (Lycopersicon esculentum L.) as the test plant and tested arbuscular mycorrhizal fungi (AMF) and Bacillus subtilis as inoculants. Inoculations were carried out using pot culture and root drenching methods, with saline-alkaline solutions at concentrations of 15mmol/L (SA1), 75mmol/L (SA2), and 150mmol/L (SA3), to assess the effects of exogenous AMF and B. subtilis on the soil micro-ecological environment under saline-alkaline stress. Results showed that both AMF+B. subtilis sterilisation solution (Gm) and AMF steriliser+B. subtilis (B) moderately improved the saline-alkaline soil conditions. However, the dual treatment (Gm+B) demonstrated the most pronounced remediation effect. Under the dual inoculation, plant height increased significantly, by 57.52% compared to the blank control (CK1) and by 58.04% compared to the inactivated inoculant control (CK2). In the Gm+B group, soil organic matter increased by a maximum of 47.15% compared to CK1, exceeding the growth observed in the Gm and B treatments alone. Significant increases in soil total nitrogen (N), available phosphorus (P), and available potassium (K) were observed, with improvements of 38.85% (SA2+Gm+B), 465.20% (SA1+Gm+B), and 157.75% (SA3+Gm+B), respectively. Soil enzyme activities, including urease, sucrase, and catalase, were markedly enhanced under dual treatment, with increases of 63.64% (SA2+Gm+B), 209.63% (SA3+Gm+B), and 45.26% (SA3+Gm+B), respectively. Soil bacterial, fungal, and actinomycete populations increased to 1.93, 1.25, and 4.37times those of CK1under SA2+Gm+B and SA3+Gm+B, indicating a substantial improvement in the rhizosphere microbial community structure. The synergistic interaction of AMF and B. subtilis reduced soil pH and electrical conductivity while significantly increasing soil moisture content. N, P, and K levels showed an upward trend, and AMF colonization rates were enhanced, effectively mitigating the negative effects of saline-alkaline soil on enzyme activities and promoting root and stem development. Therefore, the AMF-B. subtilis dual microbial system demonstrates strong potential for effective ecological restoration of saline-alkaline soil microenvironments.
叶玢妤, 俞跃, 何沛益, 谢启晓, 杨瑞滢, 吴嘉睿, 刘怡琳, 林子然, 赖威宇, 许凌祎, 刘鹏, 洪华嫦. 丛枝菌根真菌-枯草芽孢杆菌组合体系对盐碱土壤微生态的修复作用[J]. 中国环境科学, 2025, 45(1): 440-449.
YE Bin-yu, YU Yue, HE Pei-yi, XIE Qi-xiao, YANG Rui-ying, WU Jia-rui, LIU Yi-lin, LIN Zi-ran, LAI Wei-yu, XU Ling-yi, LIU Peng, HONG Hua-chang. Remediation of saline-alkali soil microecology by a combined system of mycorrhizal fungus-Bacillus subtilis. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(1): 440-449.
[1] Li H, Wang B J, Siri M, et al. Calcium-modified biochar rather than original biochar decreases salinization indexes of saline-alkaline soil [J]. Environmental Science and Pollution Research International, 2023,30(30):74966-74976. [2] Awad Y M, Lee S E, Ahmed M, et al. A potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables [J]. Journal of Cleaner Production, 2017,156(10):581-588. [3] Yang D H, Tang L, Cui Y, et al. Saline-alkali stress reduces soil bacterial community diversity and soil enzyme activities [J]. Ecotoxicology, 2022,31(9):1356-1368. [4] 路海玲,孟亚利,周玲玲,等.盐胁迫对棉田土壤微生物量和土壤养分的影响 [J]. 水土保持学报, 2011,25(1):197- 201. Lu H L, Meng Y L, Zhou L L, et al. Effects of salt stress on soil microbial biomass and soil nutrients in cotton field [J]. Journal of Soil and Water Conservation, 2011,25(1):197-201. [5] Yan Y, Kayem K, Hao Y, et al. Mapping the levels of soil salination and alkalization by integrating machining learning methods and soil-forming factors [J]. Remote Sensing, 2022,14(13):3020-3020. [6] Liang W J, Ma X L, Wan P, et al. Plant salt-tolerance mechanism: A review [J]. Biochemical and Biophysical Research Communications, 2018,495(1):286-291. [7] 井大炜,马海林,刘方春,等.盐胁迫环境下接种根际促生细菌对碱蓬根际土壤微环境特征的影响 [J]. 中国土壤与肥料, 2018,(4):34-39. Jing D W, Ma H L, Liu F C, et al. Effects of inoculating plant growth-promoting rhizobacteria on the micro- environmental characteristics of the rhizosphere soil of suaeda glauce be under salt stress [J]. Soil and Fertilizer Sciences in China, 2018,(4):34-39. [8] Genre A, Lanfranco L, Perotto S, et al. Unique and common traits in mycorrhizal symbioses [J]. Nature Reviews Microbiology, 2020, 18(11):649-660. [9] 补春兰,晏梅静,董廷发,等.接种丛枝菌根真菌(AMF)对不同性别合栽模式下桑树生物量、光合及侵染率的影响 [J]. 植物生理学报, 2022,58(11):2181-2190. Bu C L, Yan M J, Dong T F, et al. Effects of arbuscular mycorrhizal fungi (AMF) on biomass, photosynthetic characteristics and infection rate of mulberry (Morus alba) in different combination [J]. Plant Physiology Journal, 2022,58(11):2181-2190. [10] 王 晓,毕银丽,王 义,等.沙棘林密度和丛枝菌根真菌接种对林下植物和土壤性状的影响 [J]. 林业科学, 2023,59(10):138-149. Wang X, Bi Y L, Wang Y, et al. Effects of planting density of Hippophae rhamnoides and inoculation of AMF on understory vegetation growth and soil improvement [J]. Scientia Silvae Sinicae, 2023,59(10):138-149. [11] 雷 梅,甘子莹,谭世广,等.丛枝菌根真菌和不同形态氮对杉木幼苗根际土壤氮磷养分含量及其相关酶化学计量比的影响 [J]. 林业科学研究, 2023,36(1):59-67. Lei M, Gan Z Y, Tan S G, et al. Effects of arbuscular mycorrhizal fungi inoculation and different forms of nitrogen addition on soil nitrogen and phosphorus contents and enzyme stoichiometry in the rhizosphere of Chinese fir seedlings [J]. Forest Research, 2023, 36(1):59-67. [12] 赵 敏,刘红玲,邓錡璋,等.AM真菌对油樟幼苗生长及土壤养分的影响 [J]. 湖北农业科学, 2021,60(17):74-77. Zhao M, Liu H L, Deng Q Z, et al. Effect of AM fungus on camphor seedling growth and soil nutrients [J]. Hubei Agricultural Sciences, 2021,60(17):74-77. [13] 杨 盼,翟亚萍,赵 祥,等. AM真菌和根瘤菌互作对苜蓿根际土壤真菌群落结构的影响及功能预测 [J]. 草业科学, 2020,37(9):1669- 1680. Yang P, Zhai Y P, Zhao X, et al. Effect of arbuscular mycorrhizal fungi and rhizobium inoculation on soil fungal community structure and function in the rhizosphere of Medicago sativa [J]. Pratacultural Science, 2020,37(9):1669-1680. [14] 肖 敏,高彦征,凌婉婷,等.菲、芘污染土壤中丛枝菌根真菌对土壤酶活性的影响 [J]. 中国环境科学, 2009,29(6):668-672. Xiao M, Gao Y Z, Ling W T, et al. Effects of arbuseular mycorrhizal fungi on enzymes activity in soils contaminated by phenanthrene and pyrene [J]. China Environmental Science, 2009,29(6):668-672. [15] 杨世伟,王建平,刘 帅,等.土壤改良剂对黄土高原旱作苹果园土壤理化性质及经济效益的影响 [J]. 节水灌溉, 2023,(1):40-46. Yang S W, Wang J P, Liu S, et al. Effects of oil amendments on soil physical and chemical properties of dryland apple orchards and economic efficiency in the loess plateau [J]. Water Saving Irrigation, 2023,(1):40-46. [16] 黄亚丽,郑立伟,黄媛媛,等.枯草芽孢杆菌菌剂不同施用方式对甜瓜土壤微生物多样性及生长的影响 [J]. 生物工程学报, 2020,36(12): 2644-2656. Huang Y L, Zheng L W, Huang Y Y, et al. Effects of different application methods of Bacillus subtilis agent on soil microbial diversity and growth of muskmelon [J]. Chinese Journal of Biotechnology, 2020,36(12):2644-2656. [17] 侯亚玲,周蓓蓓,王全九.枯草芽孢杆菌对盐碱土面蒸发及水盐分布的影响 [J]. 水土保持学报, 2018,32(2):306-311. Hou Y L, Zhou B B, Wang J Q. Effects of Bacillus subtilis on evaporation of soil surface and water and salt dsitritution in saline- alkali soil [J]. Journal of Soil and Water Conservation, 2018,32(2): 306-311. [18] Jones J D, Vance R E, Dangl J L. Intracellular innate immune surveillance devices in plants and animals [J]. Science, 2016,354 (6316):1117-1126. [19] Nanjundappa A, Bagyaraj D J, Saxena A K, et al. Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants [J]. Fungal Biology and Biotechnology, 2019,6: 23-33. [20] 王丽丽,杨 谦.接种枯草芽孢杆菌和丛枝菌根真菌促进红三叶修复石油污染土壤 [J]. 江苏农业科学, 2016,44(5):526-529. Wang L L, Yang Q. Promoting Trifolium pratense phytoremediation of oil-contaminated soils by inoculation with Bacillus subtilis and Glomus geosporum [J]. Jiangsu Agricultural Sciences, 2016,44(5): 526-529. [21] 黄玉丹,张淑彬,李 琳,等.丛枝菌根真菌繁殖体的高效扩繁 [J]. 微生物学通报, 2023,50(2):503-513. Huang Y D, Zhang S B, Li L, et al. Efficient propagation of arbuscular mycorrhizal fungal propagules [J]. Microbiology China, 2023,50(2): 503-513. [22] 何 斐,雷雨俊,段园鹏,等.宿主和培养基质对根内根生囊霉菌剂扩繁的影响及菌根化魔芋栽培 [J]. 西北农林科技大学学报(自然科学版), 2023,51(3):84-92. He F, Lei Y J, Duan Y P, et al. Effects of host and cultivating substrates on propagation of Rhizophagus irregularis and cultivation of Amorphophallus konjac with mycorrhization [J]. Journal of Northwest A&F University (Natural Science Edition), 2023,51(3): 84-92. [23] 马俊卿,侯 宁,孙晨瑜,等.宿主不同对丛枝菌根真菌扩繁效应的影响 [J]. 中国农学通报, 2022,38(1):7-14. Ma J Q, Hou N, Sun C Y, et al. Effects of different hosts on propagation of arbuscular mycorrhizal fungi [J]. Chinese Agricultural Science Bulletin, 2022,38(1):7-14. [24] Volpe V, Magurno F, Bonfante P, et al. Diversity of arbuscular mycorrhizal fungi associated with six rice cultivars in Italian agricultural ecosystem managed with alternate wetting and drying [J]. Rice Science, 2023,30(4):348-361. [25] 刘 欢.不同丛枝菌根真菌对四种植物生长特性影响 [D]. 兰州:甘肃农业大学, 2017. Liu H. Effect of different tufted mycorrhizal fungi on the growth characteristics of four plant species [D]. Lanzhou: Master’s Thesis of Gansu Agricultural University, 2017. [26] Ouerghi I, Rousset C, Bizouard F, et al. Hysteretic response of N2O reductase activity to soil pH variations after application of lime to an acidic agricultural soil [J]. Biology and Fertility of Soils, 2023,59 (4):473-479. [27] Katarina Z, Klaudija L, Mojca Š. Temporal response of urban soil water content in relation to the rainfall and throughfall dynamics in the open and below the trees [J]. Journal of Hydrology and Hydromechanics, 2023,71(2):210-220. [28] Romaneckas K, Buragienė S, Kazlauskas M, et al. Effects of soil electrical conductivity and physical properties on seeding depth maintenance and winter wheat germination, development and productivity [J]. Agronomy, 2023,13(1):190-191. [29] Roper W R, Robarge W P, Osmond D L, et al. Comparing four methods of measuring soil organic matter in north [J]. Soil Science Society of America Journal, 2019,83(2):466-474. [30] 张行荣,张淑芬.磷酸铵镁沉淀法测定聚马来酸酐氨化体系中的铵离子 [J]. 中国无机分析化学, 2013,3(1):30-33. Zhang X R, Zhang S F. Determination of ammonium ion in aminated poly (maleic anhydride) by ammoniomagnesium phosphate precipitation method [J]. Chinese Journal of Inorganic Analytical Chemistry, 2013,3(1):30-33. [31] 夏皖豫,陈彦云.粉垄耕作对耕地土壤细菌群落多样性及微生物网络结构的影响 [J]. 环境科学, 2023,44(2):1095-1103. Xia W Y, Chen Y Y. Effect of deep vertical rotary tillage on soil bacterial community diversity and microbial network structure in cultivated land [J]. Environmental Science, 2023,44(2):1095-1103. [32] 胡发霞,刘 宏,马占雄,等.钾肥中钾离子检测方法概述 [J]. 广州化工, 2016,44(20):20-21,52. Hu F X, Liu H, Ma Z X, et al. Overview of methods for detection of potassium ion in potassium fertilizer [J]. Guangzhou Chemical Industry, 2016,44(20):20-21,52. [33] 王玉功,刘婧晶,刘贻熙,等.苯酚-次氯酸钠比色法测定土壤脲酶活性影响因素的研究 [J]. 土壤通报, 2019,50(5):1166-1170. Wang Y G, Liu J J, Liu Y X, et al. Determination of influencing factors of urease activity in soil by phenol-sodium hypochlorite colorimetric method [J]. Chinese Journal of Soil Science, 2019,50(5):1166-1170. [34] 王莉丽,梅文泉,陈兴连,等.3,5-二硝基水杨酸比色法测定大米中水溶性糖含量 [J]. 中国粮油学报, 2020,35(9):168-173. Wang L L, Mei W Q, Chen X L, et al. Determination of water-soluble sugar content in rice by colorimetric method of 3,5-dinitrosalicylic acid [J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(9):168-173. [35] Patel A, Pandey V, Patra D. Influence of tannery sludge on oil yield, metal uptake and antioxidant activities of Ocimum basilicum L. grown in two different soils [J]. Ecological Engineering, 2015,83:422-430. [36] Chen W L, Shan W S, Niu T T, et al. Insight into regulation of adventitious root formation by arbuscular mycorrhizal fungus and exogenous auxin in tea plant (Camellia sinensis L.) cuttings [J]. Frontiers in Plant Science, 2023,14:1258410. [37] Lei Z, Zuo L. Bioremediation of crude-oil polluted soil using immobilized microbes [J]. IOP Conference Series: Earth and Environmental Science, 2020,510(4):42-47. [38] 周蓓蓓,侯亚玲,王全九.枯草芽孢杆菌改良盐碱土过程中水盐运移特征 [J]. 农业工程学报, 2018,34(6):104-110. Zhou B B, Hou Y L, Wang J Q. Characteristics of water-salt transport in the process of improvement of saline-alkali soil by Bacillus subtilis [J]. Transactions of the Chinese Society Agricultual Engineering, 2018, 34(6):104-110. [39] Idris E E, Bochow H, Ross H, et al. Use of Bacillus subtilis as biocontrol agent. VI. phytohormonelike action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45and Bacillus subtilis FZB37 [J]. Journal of Plant Diseases and Protection, 2004,111(6):583-597. [40] 渠晨晨,任稳燕,李秀秀,等.重新认识土壤有机质 [J]. 科学通报, 2022,67(10):913-923. Qu C C, Ren W Y, Li X X, et al. Re-understanding of soil organic matter [J]. Chinese Science Bulletin, 2022,67(10):913- 923. [41] 李少朋,毕银丽,陈昢圳,等.干旱胁迫下AM真菌对矿区土壤改良与玉米生长的影响 [J]. 生态学报, 2013,33(13):4181-4188. Li S P, Bi Y L, Chen Z Z, et al. Effects of AM fungi on soil improvement and maize growth in mining area under drought stress [J]. Chinese Journal of Ecology, 2013,33(13):4181-4188. [42] 逄焕成,李玉义,严慧峻,等.微生物菌剂对盐碱土理化和生物性状影响的研究 [J]. 农业环境科学学报, 2009,28(5):951-955. Xiao H C, Li Y Y, Yan H J, et al. Study on the effect of microbial agents on physicochemical and biological properties of saline-alkali soil [J]. Journal of Agro-Environment Science, 2009,28(5):951-955. [43] 刘华兵,李谦维,高俊琴,等.红碱淖湿地不同水分条件下芦苇群落对土壤有机碳组分和无机氮含量的影响 [J]. 环境科学学报, 2022, 42(1):88-94. Liu H B, Li Q W, Gao J Q, et al. Effects of Phragmites australis community on soil organic carbon and inorganic nitrogen content under different soil moistures in Hongjiannao wetland [J]. Journal of Environmental Science, 2022,42(1):88-94. [44] 颜路明,郭祥泉.盐碱胁迫对香樟幼苗根际土壤酶活性的影响 [J]. 土壤, 2017,49(4):733-737. Yan L M, Guo X Q. Effect of salinity-alkalinity stress on the rhizosphere soil enzyme activity of camphor seedlings [J]. Soils, 2017, 49(4):733-737. [45] 张国青,赵 盼,董彦旭,等.高通量测序分析环保肥料增效剂对马铃薯根际土壤真菌多样性变化影响 [J]. 微生物学通报, 2017,44(11): 2644-2651. Zhang G Q, Zhao P, Dong Y X, et al. Effects of a novel fertilizer synergist on fungi diversity from potato rhizosphere soil [J]. Microbiology China, 2017,44(11):2644-2651. [46] Zhang W W, Cao J, Zhang S D, et al. Effect of earthworms and arbuscular mycorrhizal fungi on the microbial community and maize growth under salt stress [J]. Applied Soil Ecology, 2016,107(13):214- 223. [47] 赵志祥,王殿东,周亚林,等.枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响 [J]. 生物技术通报, 2023,39(9):213- 224. Zhao Z X, Wang D D, Zhou Y L, et al. Control of pepper fusarium wilt by Bacillus subtilis Ya-1and its effect on rhizosphere [J]. Biotechnology Bulletin, 2023,39(9):213-224. [48] Jeongmin C, William S, Uta P. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses [J]. Annual Review of Phytopathology, 2018,56:135-160. [49] 姜海燕.AM真菌和枯草芽孢杆菌对西瓜枯萎病的防效 [J]. 北方园艺, 2016,(24):124-127. Jiang H Y. Control effect of arbuscular mycorrhizal fungi and Bacillus subtilis on fusarium wilt of watermelon [J]. Northern Horticulture, 2016,(24):124-127.