Nutrient removal effect of plant+microbial combined ecological ditch under salinity stress
YANG Wen-huan1,2, PENG Yao-hua1,2, XU Yan1,2, YAO Zhi1,2, WANG Le-le3, LI Wei-ping1,2
1. School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China; 2. Collaborative Innovation Center of Inner Mongolia Autonomous Region for Ecological Protection and Comprehensive Utilization of the Yellow River Basin, Baotou 014010, Inner Mongolia, China; 3. Service Center of Daihai Nature Reserve, Liangcheng County, Ulanqab 013750, Inner Mongolia, China
Abstract:To efficiently remove nutrient salts in high salinity lakes, this study implemented a plant+microbial ditch at Daihai Lake. The nutrient removal efficiency, plant growth, and microbial community dynamics of this ecological ditch was investigated across different salinity gradients. Immobilizing Bacillus amyloliquefaciens on polyurethane sponge within the ditch could significantly promote the growth of plant, enhance the activity of antioxidant stress-related enzymes, and strengthen the ability of plants to absorb and assimilate nutrients. Addiing Bacillus amyloliquefaciens in the ditch could not make it become the absolute dominant genus. but it could improve the microbial community structure, increase the abundance of functional microorganisms involved in nitrogen and phosphorus removal, and enhance the water purification capacity of the ditch. Compared to ecological ditches with plant-only or microorganism-only, the integrated ecological ditch could achieve higher nutrient removal rates across different salinity concentrations. Specifically, over 70% TN, NH4+-N, TP, and CODCr could be removed in the integrated ditch at 15g/L salinity. Compared plant-only ditch, the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in plants were increased 33.7%, 43.6%, and 38.7%, respectively, in planted+microbial ditch at 15.0g/L salinity.
[1] 王世欢,张 生,武 蓉,等.寒旱区湖泊浮游植物特征及其对营养状态的指示作用 [J]. 中国环境科学, 2023,43(1):311-320. Wang S H, Zhang S, Wu R, et al. Characteristics of phytoplankton in lakes in cold and arid regions and their role in indicating trophic status [J]. China Environmental Science, 2023,43(1):311-320. [2] Wang T, Zhu B, Zhou M H. Ecological ditch system for nutrient removal of rural domestic sewage in the hilly area of the central Sichuan Basin, China [J]. Journal of Hydrology, 2019,570:839-849. [3] Liang Y, Zhu H, Banuelos G, et al. Constructed wetlands for saline wastewater treatment: A review [J]. Ecological Engineering, 2017, 98:275-285. [4] Liang Y X, Zhu H, Bañuelos G, et al.Removal of nutrients in saline wastewater using constructed wetlands: Plant species, influent loads and salinity levels as influencing factors [J]. Chemosphere, 2017,187:52-61. [5] Wang J X, Liu Y, Ma Y C, et al. Research progress regarding the role of halophilic and halotolerant microorganisms in the eco- environmental sustainability and conservation [J]. Journal of Cleaner Production, 2023,418:138054-138054. [6] 曾碧健,窦碧霞,黎祖福,等.海洋盐生植物海马齿(Sesuvium portulacastrum)对环境盐度胁迫的耐受性及营养价值综合评价 [J]. 海洋与湖沼, 2017,48(3):568-575. Zeng B J, Dou B X, Li Z F., et al. Comprehensive evaluation of the tolerance of the marine halophyte Sesuvium portulacastrum to environmental salinity stress and its nutritional value. Journal of Oceanology and Limnology, 2017,48(3):568-575. [7] 廖明晶,范敬龙,匡代洪,等.高盐废水处理中耐盐湿地植物的筛选 [J]. 广东化工, 2021,48(14):154-155,188. Liao M J, Fan J L, Kuang D H, et al. Screening of salt-tolerant wetland plants in high-salt wastewater treatment [J]. Guangdong Chemical Industry, 2021,48(14):154-155,188. [8] 王伟英,徐成龙,陈盈盈,等.Bacillus sp. Z2对稀土钇的固定及阻控水稻吸收效应 [J]. 中国环境科学, 2023,43(2):927-934. Wang W Y, Xu C L, Chen Y Y, et al. Effect of Z2 on the fixation of rare earth yttrium and its resistance to rice absorption [J]. China Environmental Science, 2023,43(2):927-934. [9] Stefany C, Vladimir T V, Ezio R, et al.Use of halotolerant Bacillus amyloliquefaciens RHF6as a bio-based strategy for alleviating salinity stress in Lotus japonicus cv Gifu [J]. Microbiological Research, 2023,268:127274. [10] 范 真.耐盐湿地植物的净水能力及腐烂分解研究 [D]. 南京:南京林业大学, 2020. Fan Z. Study on water purification capacity and decay decomposition of salt-tolerant wetland plants [D]. Nanjing: Nanjing Forestry University, 2020. [11] 郭 清,佟 馨,王凌生,等.复合垂直流人工湿地污染物去除效率影响研究 [J]. 环境科学与管理, 2023,48(9):124-128. Guo Q, Tong X, Wang L S, et al. Environmental Science and Management, 2023,48(9):124-128. [12] 陈 睿,陈晓颖,刘智明,等.生物絮团技术在水产养殖业中的研究进展 [J]. 工业微生物, 2023,53(1):51-54. Chen R, Chen X Y, Liu Z M, et al. Research progress of biofloc technology in aquaculture [J]. Industrial Microbiology, 2023,53(1):51-54. [13] 黄晓晨,于金山,王晓奕,等.挺水植物在富营养化水体净化中的应用进展 [J]. 中南农业科技, 2024,45(2):144-151. Huang X C, Yu J S, Wang X Y, et al. Application progress of water plants in eutrophication water purification [J]. Zhongnan Agricultural Science and Technology, 2024,45(2):144-151. [14] Dweipayan G, Pinakin D, Pranav P, et al. Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2 [J]. Microbiological Research, 2014,169(1):66-75. [15] 赵淑凤,刘 慧,赵 磊,等.不同铁、氮转化功能微生物对Fe(II)化学氧化的响应 [J]. 地球科学, 2021,46(4):1481-1489. Zhao S F, Liu H, Zhao L, et al. Responses of Microorganisms with Different Iron and Nitrogen Conversion Functions to Chemical Oxidation of Fe(II) [J]. Earth Science, 2021,46(4):1481-1489. [16] Wang Q, Li S, Fei L G,et al.A study of typical plant growth changes in response to drainage water and salt in ditch wetland in arid area [J]. Science of The Total Environment, 2024,912:169315-169315. [17] Yang T, Yang Q, Shi Y, et al.Insight into the denitrification mechanism of Bacillus subtilis JD-014 and its application potential in bioremediation of nitrogen wastewater [J]. Process Biochemistry, 2021,103:78-86. [18] Cerozi B, Fitzsimmons K. Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems [J]. Scientia Horticulturae, 2016,Volume 211,211:277-282. [19] 吴秀蓉,肖朝江,沈 怡,等.植物来源抗疟倍半萜类天然产物研究(1972~2022) [J]. 有机化学, 2023,43(8):2764-2789. [20] Romero M A, Aroca R, et al.A non-K+-solubilizing PGPB (Bacillus megaterium) increased K+ deprivation tolerance in Oryza sativa seedlings by up-regulating root K+ transporters [J]. Plant Physiology and Biochemistry, 2023,196:774-782. [21] 陆 叶.枯草芽孢杆菌对盐胁迫下紫花苜蓿的缓解研究 [D]. 扬州:扬州大学, 2023. Lu Ye. Study on the alleviation of alfalfa by Bacillus subtilis under salt stress [D]. Yangzhou: Yangzhou University, 2023. [22] 栾红艳,赵卫红,苗 辉.Cd2+胁迫下中肋骨条藻细胞内多胺的生理响应 [J]. 中国环境科学, 2015,35(5):1487-1494. Luan H Y, Zhao W H, Miao H. Polyamines response to Cd2+ stress and their physiological roles in Skeletonema Costatum [J]. China Environmental Science, 2015,35(5):1487-1494. [23] 方发之,桂慧颖,黎肇家,等.6种红树幼苗对不同盐度的生理适应性 [J]. 植物研究, 2023,43(6):881-889. Fang F Z, Gui H Y, Li Z J, et al. Physiological adaptability of six species of mangrove seedlings to different salinity [J]. Bulletin of Botanical Research, 2023,43(6):881-889. [24] Wang G, Zhang L S, Zhang S H et al.The combined use of a plant growth promoting Bacillus sp. strain and GABA promotes the growth of rice under salt stress by regulating antioxidant enzyme system, enhancing photosynthesis and improving soil enzyme activities [J]. Microbiological Research, 2023,266:127225. [25] Wang P, Xu Z, Zhang Y, et al. Over-expression of spermidine synthase 2 (SlSPDS2) in tomato plants improves saline-alkali stress tolerance by increasing endogenous polyamines content to regulate antioxidant enzyme system and ionic homeostasis [J]. Plant Physiology and Biochemistry, 2022,192:172-185. [26] María F V M, Salvador C A, Paulina G G, et al.Survival strategies of Bacillus spp. in saline soils: Key factors to promote plant growth and health [J]. Biotechnology Advances, 2024,70:108303-108303. [27] Wang Q L, Peng X Y, Lang D Y, et al. Physio-biochemical and transcriptomic analysis reveals that the mechanism of Bacillus cereus G2alleviated oxidative stress of salt-stressed Glycyrrhiza uralensis Fisch seedlings [J]. Ecotoxicology and Environmental Safety, 2022,247:114264. [28] Zhang X, Song Z, Tang Q, et al. Performance and microbial community analysis of bioaugmented activated sludge for nitrogen- containing organic pollutants removal [J]. Journal of Environmental Sciences, 2021,101:373-381. [29] 徐伟超,吴翠平,张玉秀,等.喹啉降解菌Ochrobactrum sp.的好氧降解特性及其在焦化废水中的生物强化作用 [J]. 环境科学, 2017,38(5): 2030-2035. Xu W C, Wu C P, Zhang Y X, et al. Aerobic Degradation Characteristics of Ochrobactrum sp. and Its Bioaugmentation Effect in Coking Wastewater [J]. Environmental Science, 2017,38(5):2030-2035. [30] 杨亚红,薛莉霞,孙 波,等.解淀粉芽孢杆菌生物有机肥防控土壤氨挥发 [J]. 环境科学, 2020,41(10):4711-4718. Yang Y H, Xue L X, Sun B, et al. Prevention and Control of Ammonia Volatilization in Soil by Bacillus Amyloliques Bioorganic Fertilizer [J]. Environmental Science, 2020,41(10):4711-4718. [31] 崔逸儒,杨 毅,严 俊,等.脱卤单胞菌属在厌氧降解有机氯化物及污染场地修复应用中的研究进展 [J]. 生物工程学报, 2021,37(10): 3565-3577. Cui Y R, Yang Y, Yan J, et al. Research Progress of Dehalomonas in Anaerobic Degradation of Organochlorides and Remediation of Contaminated Sites [J]. Chinese Journal of Biotechnology, 2021, 37(10):3565-3577. [32] Wang H, Gilbert J A, Zhu Y, et al. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment [J]. Science of the Total Environment, 2018,631-632:1342-1349. [33] 吴春晗,白 洁,赵阳国,等.ZnO-NPs对好氧反硝化细菌Zobellella sp.B307的致毒机制 [J]. 中国环境科学, 2020,40(8):3644-3653. Wu C H, Bai J, Zhao Y G, et al. Effect of ZnO-NPs on aerobic denitrifying bacteria Zobellella sp. Toxicity Mechanism of B307 [J]. China Environmental Science, 2020,40(8):3644-3653.