Spatio-temporal heterogeneity of vegetation cover and its driving forces in the Taihangshan-Yanshan Region
WANG Min-li1,2, ZHANG Hui-cong1, DONG Li-yao1, LI Jia-rui1, PANG Jiao3, YAN Feng1,4, HE Ling1
1. College of Land and Resources, Hebei Agricultural University, Baoding 071001, China; 2. School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; 3. Bohai College, Hebei Agricultural University, Huanghua 061100, China; 4. College of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
Abstract:The Taihangshan-Yanshan region serves as a crucial ecological barrier for the Beijing-Tianjin-Hebei area. Investigating the spatiotemporal patterns of vegetation growth and their influencing factors holds significant importance for implementing ecological conservation and restoration decisions. The MOD13A2.061NDVI dataset was obtained through the Google Earth Engine (GEE) platform, and the kernel Normalized Difference Vegetation Index (kNDVI) was further calculated. The spatiotemporal heterogeneity of vegetation cover was analyzed using the Theil-Sen Median method, coefficient of variation method, and Hurst index method. Subsequently, the optimal parameter geographical detector (OPGD) method was employed to identify the multivariate driving mechanisms behind its spatiotemporal differentiation. Results demonstrated that: From 2001 to 2020, the kNDVI in the study area showed a gradual increasing trend during spring, summer, and autumn, while exhibiting a decreasing trend in winter. The annual mean kNDVI displayed a spatial distribution pattern characterized by "higher values in northern and southern regions, lower in central areas", with significant spatial variability. The area with increased kNDVI (66.36%) was larger than that with decreased kNDVI (33.64%). Weak anti-persistence and weak positive persistence coexisted, collectively accounting for 99.26% of the total area. Approximately 80% of the region maintained kNDVI fluctuations at moderate or lower levels. OPGD analysis revealed that the primary drivers of kNDVI changes included evapotranspiration, land surface temperature, land use type, soil type, and vegetation type (all with q-values greater than 0.20). The interaction effects between land surface temperature and annual average temperature, and between land surface temperature and cumulative precipitation demonstrated particularly strong explanatory power, exceeding 0.50 and 0.47 respectively. Higher kNDVI values were observed when evapotranspiration ranged within (634mm, 814mm], land surface temperature fell within [5.2℃, 11.2℃], and urban population remained in (216000, 280000).
王敏丽, 张慧聪, 董丽瑶, 李佳蕊, 庞娇, 闫丰, 何玲. 太行山-燕山地区植被覆盖时空异质性及其驱动力[J]. 中国环境科学, 2025, 45(5): 2792-2805.
WANG Min-li, ZHANG Hui-cong, DONG Li-yao, LI Jia-rui, PANG Jiao, YAN Feng, HE Ling. Spatio-temporal heterogeneity of vegetation cover and its driving forces in the Taihangshan-Yanshan Region. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(5): 2792-2805.
[1] 效存德,史培军,李小雁,等.地表过程与可持续发展研究进展与展望[J].北京师范大学学报(自然科学版), 2022,58(3):476-490. Xiao C D, Shi P J, Li X Y, et al. Research progress and prospects of land surface processes and sustainable development[J]. Journal of Beijing Normal University (Natural Science Edition), 2022,58(3):476- 490. [2] 何诚,冯仲科,韩旭,等.基于多光谱数据的永定河流域植被生物量反演[J].光谱学与光谱分析, 2012,32(12):3353-3357. He C, Feng Z K, Han X, et al. Inversion of vegetation biomass in Yongding River Basin based on multispectral data[J]. Spectroscopy and Spectral Analysis, 2012,32(12):3353-3357. [3] Sun B, Li Z, Gao Z, et al. Grassland degradation and restoration monitoring and driving forces analysis based on long time-series remote sensing data in Xilin Gol League[J]. Acta Ecologica Sinica, 2017,37(4):219-228. [4] Li L, Xin X, Zhao J, et al. Remote sensing monitoring and assessment of global vegetation status and changes during 2016~2020[J]. Sensors, 2023,23(20):8452. [5] Feng X, Tian J, Wang Y, et al. Spatio-temporal variation and climatic driving factors of vegetation coverage in the Yellow River Basin from 2001 to 2020 Based on kNDVI[J]. Forests, 2023,14(3):620-620. [6] Wang Q, Moreno-Martínez Á, Muñoz-Marí J, et al. Estimation of vegetation traits with kernel NDVI[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023,195:408-417. [7] Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere[J]. Science Advances, 2021,7(9):eabc7447. [8] 梁顺林,白瑞,陈晓娜,等.2019年中国陆表定量遥感发展综述[J].遥感学报, 2020,24(6):618-671. Liang S L, Bai R, Chen X N, et al. Review of the development of quantitative remote sensing of land surface in China in 2019[J]. Journal of Remote Sensing, 2020,24(6):618-671. [9] Lyu X, Li X, Gong J, et al. Comprehensive grassland degradation monitoring by remote sensing in Xilinhot, Inner Mongolia, China[J]. Sustainability, 2020,12(9):3682. [10] Rojo-Álvarez J L, Martínez-Ramón M, Munoz-Mari J, et al. Digital signal processing with Kernel methods[M]. John Wiley& Sons, 2018. [11] Pabon-Moreno D E, Migliavacca M, Reichstein M, et al. On the potential of Sentinel-2 for estimating Gross Primary Production[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60:1-12. [12] 李泳君,陈青长,方贺,等.基于MGWR的长江流域植被演化及其影响因素[J].中国环境科学, 2024,44(1):352-362. Li Y J, Chen Q C, Feng H, et al. Vegetation evolution and influencing factors in the Yangtze River Basin based on MGWR[J]. China Environmental Science, 2024,44(1):352-362. [13] 宋小龙,马明德,王鹏,等.2000~2022年宁夏不同地理分区生长季植被覆盖度时空非平稳性特征[J].生态环境学报, 2024,33(6): 853-868. Song X L, Ma M D, Wang P, et al. Spatiotemporal nonstationary characteristics of vegetation coverage in the growing season in different geographical regions of Ningxia from 2000 to 2022[J]. Ecology and Environmental Sciences, 2024,33(6):853-868. [14] 王栋华,田义超,张亚丽,等.峰丛洼地流域植被覆盖度时空演变及其归因[J].中国环境科学, 2022,42(9):4274-4284. Wang D H, Tian Y C, Zhang Y L, et al. Spatiotemporal evolution and attribution of vegetation coverage in the peak-cluster depression basins[J]. China Environmental Science, 2022,42(9):4274-4284. [15] 孟琪,武志涛,杜自强,等.基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J].中国环境科学, 2021,41(2): 826-836. Meng Q, Wu Z T, Du Z Q, et al. Quantitative influence of regional vegetation coverage based on geographic detectors: A case study of Beijing-Tianjin aeolian sand source area[J]. China Environmental Science, 2021,41(2):826-836. [16] 金凯,王飞,韩剑桥,等.1982~2015年中国气候变化和人类活动对植被NDVI变化的影响[J].地理学报, 2020,75(5):961-974. Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982~2015[J]. Acta Geographica Sinica, 2020,75(5):961-974. [17] 梁植,孙若辰,段青云.黄河水源涵养区植被NDVI时空变化特征及其驱动因子[J].地理科学进展, 2023,42(9):1717-1732. Liang Z, Sun R C, Duan Q Y. Spatiotemporal variation of NDVI in the Yellow River water conservation zone and its driving factors[J]. Progress in Geography, 2023,42(9):1717-1732. [18] 戴强玉,徐勇,赵纯,卢云贵,等.四川盆地植被EVI动态变化及其驱动机制[J].中国环境科学, 2023,43(8):4292-4304. Dai Q Y, Xu Y, Zhao C, et al. Dynamic variation of vegetation EVI and its driving mechanism in the Sichuan Basin[J]. China Environmental Science, 2023,43(8):4292-4304. [19] Hein L, De Ridder N, Hiernaux P, et al. Desertification in the Sahel: Towards better accounting for ecosystem dynamics in the interpretation of remote sensing images[J]. Journal of Arid Environments, 2011,75(11):1164-1172. [20] 冯飞,杨鑫,贾宝全,等.中国328个城市的植被覆盖度长期变化特征及其驱动因子[J].中国科学:地球科学, 2024,54(2):486-502. Feng F, Yang X, Jia B Q, et al. Long-term variation characteristics and driving factors of vegetation cover in 328 cities in China[J]. Science China Earth Sciences, 2024,54(2):486-502. [21] Song Y, Wang J, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience& Remote Sensing, 2020,57(5):593-610. [22] Gu Z, Chen X, Ruan W, et al. Quantifying the direct andindirect effects of terrain, climate and human activity on thespatial pattern of kNDVl-based vegetation growth: A casestudy from the Minjiang River Basin, Southeast China[J]. Ecological Informatics, 2024,80: 102493. [23] 杨文静,赵建世,赵勇,等.基于结构方程模型的蒸散发归因分析[J].清华大学学报(自然科学版), 2022,62(3):581-588. Yang W J, Zhao J S, Zhao Y, et al. Evapotranspiration attribution analysis based on structural equation model[J]. Journal of Tsinghua University (Natural Science Edition), 2022,62(3):581-588. [24] 陈福军,沈彦俊,胡乔利,等.海河流域NDVI对气候变化的响应研究[J].遥感学报, 2011,15(2):401-414. Chen F J, Shen Y J, Hu Q L, et al. Research on the response of NDVI in the Haihe River Basin to climate change[J]. Journal of Remote Sensing, 2011,15(2):401-414. [25] Quamar M F. Vegetation dynamics in response to climate change from the wetlands of Western Himalaya, India: Holocene Indian Summer Monsoon variability[J]. The Holocene, 2019,29(2):345-362. [26] 刘征,赵旭阳,米林迪.基于3S技术的河北省山区植被净初级生产力估算及空间格局研究[J].水土保持研究, 2014,21(4):143-147, 153. Liu Z, Zhao X Y, Mi L D. Study on estimation and spatial pattern of vegetation Net Primary Productivity in mountainous area of Hebei Province based on 3S[J]. Research of Soil and Water Conservation, 2014,21(4):143-147,153. [27] 陈艳梅,高吉喜,年蔚,等.风域视角京津冀生态廊道空间格局识别[J].中国环境科学, 2021,41(7):3418-3426. Chen Y M, Gao J X, Nian W, et al. Identification of ecological corridors' spatial pattern in Beijing-Tianjin-Hebei region from the perspective of wind domain[J]. China Environmental Science, 2021, 41(7):3418-3426. [28] 张永蓉,张霞,尚国琲,等.京津冀地区植被覆盖时空变化研究[J].测绘与空间地理信息, 2023,46(1):81-85. Zhang Y R, Zhang X, Shang G Q, et al. Spatiotemporal variation of vegetation cover in the Beijing-Tianjin-Hebei region[J]. Surveying, Mapping and Geospatial Information, 2023,46(1):81-85. [29] 程琳琳,李玉虎,孙海元,等.京津冀MODIS长时序增强型植被指数拟合重建方法适用性研究[J].农业工程学报, 2019,35(11):148-158. Cheng L L, Li Y H, Sun H Y, et al. Study on applicability of long-time series enhanced vegetation index fitting reconstruction method in Beijing-Tianjin-Hebei region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11):148-158. [30] 曾兴兰,陈田田.西南地区植被动态变化的驱动力解析[J].中国环境科学, 2023,43(12):6561-6570. Zeng X L, Chen T T. Analysis of the driving forces of vegetation dynamic changes in southwest China[J]. China Environmental Science, 2023,43(12):6561-6570. [31] Liu Y, Zhang Z, Tong L, et al. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe[J]. Ecological Indicators, 2019,106: 105504. [32] 李霞,张乐艺,吴晨.基于GEE和地理探测器的河南省不同流域植被变化及影响因素[J].应用生态学报, 2024,35(7):1887-1896. Li X, Zhang L Y, Wu C. Vegetation change and influencing factors in different watersheds in Henan Province based on GEE and geographic detectors[J]. Chinese Journal of Applied Ecology, 2024,35(7):1887- 1896. [33] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报, 2017,72(1): 116-134. Wang J F, Xu C D. Geographic detectors: Principles and prospects[J]. Acta Geographica Sinica, 2017,72(1):116-134. [34] 冀正欣,许月卿,黄安,等.冀北山区“三生”空间识别与演化特征分析——以张家口市为例[J].北京大学学报(自然科学版), 2022, 58(1):123-134. Ji Z X, Xu Y Q, Huang A, et al. Spatial identification and evolution characteristics of production-living-ecological industries in Northern Hebei Mountainous Area: A case study of Zhangjiakou City[J]. Journal of Peking University (Natural Science Edition), 2022,58(1): 123-134. [35] Liu J, Liu S, Tang X, et al. The response of land surface temperature changes to the vegetation dynamics in the Yangtze River Basin[J]. Remote Sensing, 2022,14(20):5093. [36] 王成武,罗俊杰,汪宙峰,等.基于MGWR模型的太行山脉自然保护地空间格局评价及空间优化[J].生态学杂志, 2025,44(1):325-336. Wang C W, Luo J J, Wang Z F, et al. Spatial pattern evaluation and spatial optimization of nature reserves in Taihang Mountains based on MGWR model[J]. Chinese Journal of Ecology, 2025,44(1):325-336. [37] Fang Y, Hu R, Meng F, et al. Spatiotemporal dynamics of ecosystem service balance in the Beijing-Tianjin-Hebei Region and its ecological security barrier with Inner Mongolia[J]. Atmosphere, 2024,15(1):76. [38] 鲁军景,孙雷刚,左璐,等.基于京津冀功能分区的植被覆盖度时空演变特征及其影响因子[J].自然资源遥感, 2024,36(4):242-253. Lu J J, Sun L G, Zuo L, et al. Spatial-temporal evolution characteristics and influencing factors of vegetation coverage based on functional zoning in Beijing-Tianjin-Hebei region[J]. Remote Sensing of Natural Resources, 2024,36(4):242-253. [39] 梁玉琦,危小建,江平,等.基于力学平衡模型的生态系统服务协同与权衡关系研究——以长江中游城市群为例[J].中国环境科学, 2023,43(11):5974-5986. Liang Y Q, Wei X J, Jiang P, et al. Study on trade-offs and synergies of ecosystem services based on mechanical equilibrium model:A case of the Middle Reaches of the Yangtze River Urban Agglomerations[J]. China Environmental Science, 2023,43(11):5974-5986. [40] 候静,侯鹏,高海峰,等.中国森林类自然保护区植被时空变化及对气候变化的响应[J].生态学杂志, 2024,43(8):2365-2372. Hou J, Hou P, Gao H F, et al. Spatiotemporal changes of vegetation in forest nature reserves in China and their response to climate change[J]. Chinese Journal of Ecology, 2024,43(8):2365-2372. [41] Chen Y, Zhai Y, Gao J. Spatial patterns in ecosystem services supply and demand in the Jing-Jin-Ji region, China[J]. Journal of Cleaner Production, 2022,361:132177. [42] 陈澍祺,何玲,闫丰.京津冀植被覆盖度时空演变及其对自然人为变化的响应[J].中国环境科学, 2024,44(7):3931-3944. Chen S Q, He L, Yan F. Spatiotemporal evolution of vegetation cover in Beijing-Tianjin-Hebei region and its response to natural anthropogenic changes[J]. China Environmental Science, 2024,44(7): 3931-3944. [43] 周美林,刘家宏,刘希胜,等.青海湖流域植被动态变化驱动力及空间粒度效应[J].中国环境科学, 2024,44(3):1497-1506. Zhou M L Liu J H, Liu X S, et al. Driving force and spatial granularity effect of vegetation dynamics in Qinghai Lake Basin[J]. China Environmental Science, 2024,44(3):1497-1506. [44] 白鹏,蔡常鑫.1982~2019年中国陆地蒸散发变化的归因分析[J].地理学报, 2023,78(11):2750-2762. Bai P, Cai C X. Attribution analysis of land evapotranspiration changes in China from 1982 to 2019[J]. Acta Geographica Sinica, 2023, 78(11):2750-2762. [45] 孟琪,武志涛,杜自强,等.基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J].中国环境科学, 2021,41(2): 826-836. Meng Q, Wu Z T, Du Z Q, et al. Quantitative influence of regional vegetation coverage based on geographic detector: A case study of Beijing-Tianjin aeolian sand source area[J]. China Environmental Science, 2021,41(2):826-836. [46] 吴万民,刘涛,陈鑫.西北干旱半干旱区NDVI季节性变化及其影响因素[J].干旱区研究, 2023,40(12):1969-1981. Wu W M, Liu T, Chen X. Seasonal variation and influencing factors of NDVI in arid and semi-arid regions of Northwest China[J]. Arid Zone Research, 2023,40(12):1969-1981. [47] 冶兆霞,张洪波,杨志芳,等.陕北黄土高原气象要素对植被覆盖的空间分异影响及风险探测[J].生态学报, 2024,44(6):2379-2395. Ye Z X, Zhang H B, Yang Z F, et al. Spatial differentiation of meteorological elements on vegetation cover and risk detection on the Loess Plateau in northern Shaanxi[J]. Acta Ecologica Sinica, 2024, 44(6):2379-2395. [48] Likus-Cieślik J, Józefowska A, Frouz J, et al. Relationships between soil properties, vegetation and soil biota in extremely sulfurized mine soils[J]. Ecological Engineering, 2023,186:106836. [49] Zhang S, Guan Z, Liu Y, et al. Land use/cover change and its relationship with regional development in Xixian New Area, China[J]. Sustainability, 2022,14(11):6889. [50] 朱利欣,袁金国.京津冀地区植被净初级生产力时空分布及其与地形因子的关系[J].科技通报, 2019,35(6):197-203. Zhu L X, Yuan J G. Spatiotemporal distribution of vegetation net primary productivity and its relationship with topographic factors in the Beijing-Tianjin-Hebei region[J]. Science and Technology Bulletin, 2019,35(6):197-203. [51] 徐悦,李佳潼,郭齐韵,等.南昌市NDVI时空演化特征及其气候驱动因子分析[J].森林工程, 2024,40(5):50-61. Xu Y, Li J T, Guo Q Y, et al. Spatiotemporal evolution characteristics of NDVI and its climate driving factors in Nanchang City[J]. Forest Engineering, 2024,40(5):50-61. [52] 巢清尘,李柔珂,崔童,等.中国气候变化科学认识进展及未来展望——中国《第四次气候变化国家评估报告·第一部分》解读[J].中国人口·资源与环境, 2023,33(1):74-79. Chao Q C, Li R K, Cui T, et al. Progress in scientific understanding of climate change in China and future prospects: Interpretation of China's Fourth national assessment report on climate change Part I[J]. Chinese Population, Resources and Environment, 2023,33(1):74-79. [53] Hansen J, Kharecha P, Sato M. Climate forcing growth rates: doubling down on our Faustian bargain[J]. Environmental Research Letters, 2013,8(1):011006. University (Natural Science Edition), 2022,62(3):581-588. [24] 陈福军,沈彦俊,胡乔利,等.海河流域NDVI对气候变化的响应研究[J].遥感学报, 2011,15(2):401-414. Chen F J, Shen Y J, Hu Q L, et al. Research on the response of NDVI in the Haihe River Basin to climate change[J]. Journal of Remote Sensing, 2011,15(2):401-414. [2] 何诚,冯仲科,韩旭,等.基于多光谱数据的永定河流域植被生物量反演[J].光谱学与光谱分析, 2012,32(12):3353-3357. He C, Feng Z K, Han X, et al. Inversion of vegetation biomass in Yongding River Basin based on multispectral data[J]. Spectroscopy and Spectral Analysis, 2012,32(12):3353-3357. [3] Sun B, Li Z, Gao Z, et al. Grassland degradation and restoration monitoring and driving forces analysis based on long time-series remote sensing data in Xilin Gol League[J]. Acta Ecologica Sinica, 2017,37(4):219-228. [4] Li L, Xin X, Zhao J, et al. Remote sensing monitoring and assessment of global vegetation status and changes during 2016~2020[J]. Sensors, 2023,23(20):8452. [5] Feng X, Tian J, Wang Y, et al. Spatio-temporal variation and climatic driving factors of vegetation coverage in the Yellow River Basin from 2001 to 2020 Based on kNDVI[J]. Forests, 2023,14(3):620-620. [6] Wang Q, Moreno-Martínez Á, Muñoz-Marí J, et al. Estimation of vegetation traits with kernel NDVI[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023,195:408-417. [7] Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere[J]. Science Advances, 2021,7(9):eabc7447. [8] 梁顺林,白瑞,陈晓娜,等.2019年中国陆表定量遥感发展综述[J].遥感学报, 2020,24(6):618-671. Liang S L, Bai R, Chen X N, et al. Review of the development of quantitative remote sensing of land surface in China in 2019[J]. Journal of Remote Sensing, 2020,24(6):618-671. [9] Lyu X, Li X, Gong J, et al. Comprehensive grassland degradation monitoring by remote sensing in Xilinhot, Inner Mongolia, China[J]. Sustainability, 2020,12(9):3682. [10] Rojo-Álvarez J L, Martínez-Ramón M, Munoz-Mari J, et al. Digital signal processing with Kernel methods[M]. John Wiley& Sons, 2018. [11] Pabon-Moreno D E, Migliavacca M, Reichstein M, et al. On the potential of Sentinel-2 for estimating Gross Primary Production[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60:1-12. [12] 李泳君,陈青长,方贺,等.基于MGWR的长江流域植被演化及其影响因素[J].中国环境科学, 2024,44(1):352-362. Li Y J, Chen Q C, Feng H, et al. Vegetation evolution and influencing factors in the Yangtze River Basin based on MGWR[J]. China Environmental Science, 2024,44(1):352-362. [13] 宋小龙,马明德,王鹏,等.2000~2022年宁夏不同地理分区生长季植被覆盖度时空非平稳性特征[J].生态环境学报, 2024,33(6): 853-868. Song X L, Ma M D, Wang P, et al. Spatiotemporal nonstationary characteristics of vegetation coverage in the growing season in different geographical regions of Ningxia from 2000 to 2022[J]. Ecology and Environmental Sciences, 2024,33(6):853-868. [14] 王栋华,田义超,张亚丽,等.峰丛洼地流域植被覆盖度时空演变及其归因[J].中国环境科学, 2022,42(9):4274-4284. Wang D H, Tian Y C, Zhang Y L, et al. Spatiotemporal evolution and attribution of vegetation coverage in the peak-cluster depression basins[J]. China Environmental Science, 2022,42(9):4274-4284. [15] 孟琪,武志涛,杜自强,等.基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J].中国环境科学, 2021,41(2): 826-836. Meng Q, Wu Z T, Du Z Q, et al. Quantitative influence of regional vegetation coverage based on geographic detectors: A case study of Beijing-Tianjin aeolian sand source area[J]. China Environmental Science, 2021,41(2):826-836. [16] 金凯,王飞,韩剑桥,等.1982~2015年中国气候变化和人类活动对植被NDVI变化的影响[J].地理学报, 2020,75(5):961-974. Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982~2015[J]. Acta Geographica Sinica, 2020,75(5):961-974. [17] 梁植,孙若辰,段青云.黄河水源涵养区植被NDVI时空变化特征及其驱动因子[J].地理科学进展, 2023,42(9):1717-1732. Liang Z, Sun R C, Duan Q Y. Spatiotemporal variation of NDVI in the Yellow River water conservation zone and its driving factors[J]. Progress in Geography, 2023,42(9):1717-1732. [18] 戴强玉,徐勇,赵纯,卢云贵,等.四川盆地植被EVI动态变化及其驱动机制[J].中国环境科学, 2023,43(8):4292-4304. Dai Q Y, Xu Y, Zhao C, et al. Dynamic variation of vegetation EVI and its driving mechanism in the Sichuan Basin[J]. China Environmental Science, 2023,43(8):4292-4304. [19] Hein L, De Ridder N, Hiernaux P, et al. Desertification in the Sahel: Towards better accounting for ecosystem dynamics in the interpretation of remote sensing images[J]. Journal of Arid Environments, 2011,75(11):1164-1172. [20] 冯飞,杨鑫,贾宝全,等.中国328个城市的植被覆盖度长期变化特征及其驱动因子[J].中国科学:地球科学, 2024,54(2):486-502. Feng F, Yang X, Jia B Q, et al. Long-term variation characteristics and driving factors of vegetation cover in 328 cities in China[J]. Science China Earth Sciences, 2024,54(2):486-502. [21] Song Y, Wang J, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience& Remote Sensing, 2020,57(5):593-610. [22] Gu Z, Chen X, Ruan W, et al. Quantifying the direct andindirect effects of terrain, climate and human activity on thespatial pattern of kNDVl-based vegetation growth: A casestudy from the Minjiang River Basin, Southeast China[J]. Ecological Informatics, 2024,80: 102493. [23] 杨文静,赵建世,赵勇,等.基于结构方程模型的蒸散发归因分析[J].清华大学学报(自然科学版), 2022,62(3):581-588. Yang W J, Zhao J S, Zhao Y, et al. Evapotranspiration attribution analysis based on structural equation model[J]. Journal of Tsinghua University (Natural Science Edition), 2022,62(3):581-588. [24] 陈福军,沈彦俊,胡乔利,等.海河流域NDVI对气候变化的响应研究[J].遥感学报, 2011,15(2):401-414. Chen F J, Shen Y J, Hu Q L, et al. Research on the response of NDVI in the Haihe River Basin to climate change[J]. Journal of Remote Sensing, 2011,15(2):401-414. [25] Quamar M F. Vegetation dynamics in response to climate change from the wetlands of Western Himalaya, India: Holocene Indian Summer Monsoon variability[J]. The Holocene, 2019,29(2):345-362. [26] 刘征,赵旭阳,米林迪.基于3S技术的河北省山区植被净初级生产力估算及空间格局研究[J].水土保持研究, 2014,21(4):143-147, 153. Liu Z, Zhao X Y, Mi L D. Study on estimation and spatial pattern of vegetation Net Primary Productivity in mountainous area of Hebei Province based on 3S[J]. Research of Soil and Water Conservation, 2014,21(4):143-147,153. [27] 陈艳梅,高吉喜,年蔚,等.风域视角京津冀生态廊道空间格局识别[J].中国环境科学, 2021,41(7):3418-3426. Chen Y M, Gao J X, Nian W, et al. Identification of ecological corridors' spatial pattern in Beijing-Tianjin-Hebei region from the perspective of wind domain[J]. China Environmental Science, 2021, 41(7):3418-3426. [28] 张永蓉,张霞,尚国琲,等.京津冀地区植被覆盖时空变化研究[J].测绘与空间地理信息, 2023,46(1):81-85. Zhang Y R, Zhang X, Shang G Q, et al. Spatiotemporal variation of vegetation cover in the Beijing-Tianjin-Hebei region[J]. Surveying, Mapping and Geospatial Information, 2023,46(1):81-85. [29] 程琳琳,李玉虎,孙海元,等.京津冀MODIS长时序增强型植被指数拟合重建方法适用性研究[J].农业工程学报, 2019,35(11):148-158. Cheng L L, Li Y H, Sun H Y, et al. Study on applicability of long-time series enhanced vegetation index fitting reconstruction method in Beijing-Tianjin-Hebei region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11):148-158. [30] 曾兴兰,陈田田.西南地区植被动态变化的驱动力解析[J].中国环境科学, 2023,43(12):6561-6570. Zeng X L, Chen T T. Analysis of the driving forces of vegetation dynamic changes in southwest China[J]. China Environmental Science, 2023,43(12):6561-6570. [31] Liu Y, Zhang Z, Tong L, et al. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe[J]. Ecological Indicators, 2019,106: 105504. [32] 李霞,张乐艺,吴晨.基于GEE和地理探测器的河南省不同流域植被变化及影响因素[J].应用生态学报, 2024,35(7):1887-1896. Li X, Zhang L Y, Wu C. Vegetation change and influencing factors in different watersheds in Henan Province based on GEE and geographic detectors[J]. Chinese Journal of Applied Ecology, 2024,35(7):1887- 1896. [33] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报, 2017,72(1): 116-134. Wang J F, Xu C D. Geographic detectors: Principles and prospects[J]. Acta Geographica Sinica, 2017,72(1):116-134. [34] 冀正欣,许月卿,黄安,等.冀北山区“三生”空间识别与演化特征分析——以张家口市为例[J].北京大学学报(自然科学版), 2022, 58(1):123-134. Ji Z X, Xu Y Q, Huang A, et al. Spatial identification and evolution characteristics of production-living-ecological industries in Northern Hebei Mountainous Area: A case study of Zhangjiakou City[J]. Journal of Peking University (Natural Science Edition), 2022,58(1): 123-134. [35] Liu J, Liu S, Tang X, et al. The response of land surface temperature changes to the vegetation dynamics in the Yangtze River Basin[J]. Remote Sensing, 2022,14(20):5093. [36] 王成武,罗俊杰,汪宙峰,等.基于MGWR模型的太行山脉自然保护地空间格局评价及空间优化[J].生态学杂志, 2025,44(1):325-336. Wang C W, Luo J J, Wang Z F, et al. Spatial pattern evaluation and spatial optimization of nature reserves in Taihang Mountains based on MGWR model[J]. Chinese Journal of Ecology, 2025,44(1):325-336. [37] Fang Y, Hu R, Meng F, et al. Spatiotemporal dynamics of ecosystem service balance in the Beijing-Tianjin-Hebei Region and its ecological security barrier with Inner Mongolia[J]. Atmosphere, 2024,15(1):76. [38] 鲁军景,孙雷刚,左璐,等.基于京津冀功能分区的植被覆盖度时空演变特征及其影响因子[J].自然资源遥感, 2024,36(4):242-253. Lu J J, Sun L G, Zuo L, et al. Spatial-temporal evolution characteristics and influencing factors of vegetation coverage based on functional zoning in Beijing-Tianjin-Hebei region[J]. Remote Sensing of Natural Resources, 2024,36(4):242-253. [39] 梁玉琦,危小建,江平,等.基于力学平衡模型的生态系统服务协同与权衡关系研究——以长江中游城市群为例[J].中国环境科学, 2023,43(11):5974-5986. Liang Y Q, Wei X J, Jiang P, et al. Study on trade-offs and synergies of ecosystem services based on mechanical equilibrium model:A case of the Middle Reaches of the Yangtze River Urban Agglomerations[J]. China Environmental Science, 2023,43(11):5974-5986. [40] 候静,侯鹏,高海峰,等.中国森林类自然保护区植被时空变化及对气候变化的响应[J].生态学杂志, 2024,43(8):2365-2372. Hou J, Hou P, Gao H F, et al. Spatiotemporal changes of vegetation in forest nature reserves in China and their response to climate change[J]. Chinese Journal of Ecology, 2024,43(8):2365-2372. [41] Chen Y, Zhai Y, Gao J. Spatial patterns in ecosystem services supply and demand in the Jing-Jin-Ji region, China[J]. Journal of Cleaner Production, 2022,361:132177. [42] 陈澍祺,何玲,闫丰.京津冀植被覆盖度时空演变及其对自然人为变化的响应[J].中国环境科学, 2024,44(7):3931-3944. Chen S Q, He L, Yan F. Spatiotemporal evolution of vegetation cover in Beijing-Tianjin-Hebei region and its response to natural anthropogenic changes[J]. China Environmental Science, 2024,44(7): 3931-3944. [43] 周美林,刘家宏,刘希胜,等.青海湖流域植被动态变化驱动力及空间粒度效应[J].中国环境科学, 2024,44(3):1497-1506. Zhou M L Liu J H, Liu X S, et al. Driving force and spatial granularity effect of vegetation dynamics in Qinghai Lake Basin[J]. China Environmental Science, 2024,44(3):1497-1506. [44] 白鹏,蔡常鑫.1982~2019年中国陆地蒸散发变化的归因分析[J].地理学报, 2023,78(11):2750-2762. Bai P, Cai C X. Attribution analysis of land evapotranspiration changes in China from 1982 to 2019[J]. Acta Geographica Sinica, 2023, 78(11):2750-2762. [45] 孟琪,武志涛,杜自强,等.基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J].中国环境科学, 2021,41(2): 826-836. Meng Q, Wu Z T, Du Z Q, et al. Quantitative influence of regional vegetation coverage based on geographic detector: A case study of Beijing-Tianjin aeolian sand source area[J]. China Environmental Science, 2021,41(2):826-836. [46] 吴万民,刘涛,陈鑫.西北干旱半干旱区NDVI季节性变化及其影响因素[J].干旱区研究, 2023,40(12):1969-1981. Wu W M, Liu T, Chen X. Seasonal variation and influencing factors of NDVI in arid and semi-arid regions of Northwest China[J]. Arid Zone Research, 2023,40(12):1969-1981. [47] 冶兆霞,张洪波,杨志芳,等.陕北黄土高原气象要素对植被覆盖的空间分异影响及风险探测[J].生态学报, 2024,44(6):2379-2395. Ye Z X, Zhang H B, Yang Z F, et al. Spatial differentiation of meteorological elements on vegetation cover and risk detection on the Loess Plateau in northern Shaanxi[J]. Acta Ecologica Sinica, 2024, 44(6):2379-2395. [48] Likus-Cieślik J, Józefowska A, Frouz J, et al. Relationships between soil properties, vegetation and soil biota in extremely sulfurized mine soils[J]. Ecological Engineering, 2023,186:106836. [49] Zhang S, Guan Z, Liu Y, et al. Land use/cover change and its relationship with regional development in Xixian New Area, China[J]. Sustainability, 2022,14(11):6889. [50] 朱利欣,袁金国.京津冀地区植被净初级生产力时空分布及其与地形因子的关系[J].科技通报, 2019,35(6):197-203. Zhu L X, Yuan J G. Spatiotemporal distribution of vegetation net primary productivity and its relationship with topographic factors in the Beijing-Tianjin-Hebei region[J]. Science and Technology Bulletin, 2019,35(6):197-203. [51] 徐悦,李佳潼,郭齐韵,等.南昌市NDVI时空演化特征及其气候驱动因子分析[J].森林工程, 2024,40(5):50-61. Xu Y, Li J T, Guo Q Y, et al. Spatiotemporal evolution characteristics of NDVI and its climate driving factors in Nanchang City[J]. Forest Engineering, 2024,40(5):50-61. [52] 巢清尘,李柔珂,崔童,等.中国气候变化科学认识进展及未来展望——中国《第四次气候变化国家评估报告·第一部分》解读[J].中国人口·资源与环境, 2023,33(1):74-79. Chao Q C, Li R K, Cui T, et al. Progress in scientific understanding of climate change in China and future prospects: Interpretation of China's Fourth national assessment report on climate change Part I[J]. Chinese Population, Resources and Environment, 2023,33(1):74-79. [53] Hansen J, Kharecha P, Sato M. Climate forcing growth rates: doubling down on our Faustian bargain[J]. Environmental Research Letters, 2013,8(1):011006.