|
|
Denitrifying phosphorus removal and microbial characteristics based on the optimization of carbon sources |
PAN Ting1, ZHANG Miao1, FAN Ya-jun2, LIU Yi-zhong3, PANG Jing-jin3, WANG Yi-xin1, YU Meng1 |
1. College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; 2. Yangzhou Polytechnic Institute, Yangzhou 225127, China; 3. Yangzhou Jieyuan Drainage Company Limited, Yangzhou 225002, China |
|
|
Abstract The effect of sodium acetate/sodium propionate ratios (1:0, 2:1, 1:1, 1:2 and 0:1) on denitrifying phosphorus removal was investigated using anaerobic/anoxic/oxic-sequencing batch reactor (AAO-SBR) by seeding the activated sludge from anaerobic/anoxic/oxic-biological contact oxidation (AAO-BCO) system. The evolution of microbial community structure was also compared by high-throughput sequencing under different ratios. The results showed that the AAO-SBR system revealed high organic matter and denitrifying phosphorus removal abilities under five operating conditions. When the ratio of sodium acetate/sodium propionate was 1:0, COD utilization efficiency was 87.63% while poly β-hydroxyalkanoate (PHAs) of 174mgCOD/gMLSS was synthesized simultaneously in the anaerobic stage, and phosphorus release was up to 31.22mg/L. In the anoxic stage, PO43--P (74%) was removed along with NO3--N denitrification (90%), and the utilization rate of PHAs was 72.4%, achieving efficient removals of nitrogen and phosphorus. High-throughput sequencing results showed that the abundance and diversity of microbial community were influenced by different carbon source ratios, among which Proteobacteria (31%~76%), Chloroflexi (1%~26%) and Bacteroidetes (2%~31%) occupied a large proportion. But the microbial diversity was higher when sodium acetate and sodium propionate were co-existed. Phosphate accumulating organisms (PAOs, 21.364%) were dominant with the competition of glycogen accumulating organisms (GAOs, 2.317%) using sodium acetate as the single carbon source.
|
Received: 14 November 2019
|
|
|
|
|
[1] |
Dalu T, Wasserman R J, Magoro M L, et al. River nutrient water and sediment measurements inform on nutrient retention, with implications for eutrophication[J]. Science of the Total Environment, 2019,684:296-302.
|
[2] |
Ma Y, Peng Y Z, Wang X L, et al. Improving nutrient removal of the AAO process by an influent bypass flow by denitrifying phosphorus removal[J]. Desalination, 2009,246(1):534-544.
|
[3] |
张淼,张颖,黄棚兰,等.A2/O-MBBR反硝化除磷工艺中有机物的迁移转化及利用[J]. 中国环境科学, 2017,37(11):4132-4139. Zhang M, Zhang Y, Huang P L, et al. Migration and transformation and utilization of organic matter in A2/O-MBBR denitrifying phosphorus removal process[J]. China Environmental Science, 2017, 37(11):4132-4139.
|
[4] |
王亚宜,彭永臻,王淑莹,等.反硝化除磷理论、工艺及影响因素[J]. 中国给水排水, 2003,19(1):33-36. Wang Y Y, Peng Y Z, Wang S Y, et al. Theory, technology and influencing factors of denitrification phosphorus removal[J]. China Water & Wastewater, 2003,19(1):33-36.
|
[5] |
王晓霞,王淑莹,赵骥,等.SPNED-PR系统内PAOs-GAOs的竞争关系及其氮磷去除特性[J]. 中国环境科学, 2018,38(2):551-559. Wang X X, Wang S Y, Zhao J, et al. The competitive relationships of PAOs-GAOs in simultaneous partial nitrification-endogenous denitrification and phosphorous removal (SPNED-PR) systems and their nutrient removal characteristics[J]. China Environmental Science, 2018,38(2):551-559.
|
[6] |
孙雅雯,张建华,彭永臻,等.外加碳源类型对A2/O-BCO系统脱氮除磷性能的影响[J]. 化工学报, 2018,69(8):3626-3634. Sun Y W, Zhang J H, Peng Y Z, et al. Effect of additional carbon sources on nitrogen and phosphorus removal characteristics in A2/O-BCO process[J]. CIESC Journal, 2018,69(8):3626-3634.
|
[7] |
张爽,刘春花,李向红.双污泥SBR工艺反硝化除磷特性的研究[J]. 山西建筑, 2018,44(23):114-115. Zhang S, Liu C H, Li X H. Study on denitrification phosphorus removal by two-sludge SBR process[J]. Shanxi Architecture, 2018, 44(23):114-115.
|
[8] |
Xu J P, Sun Y X, Liu Y, et al. In-situ sludge settleability improvement and carbon reuse in SBR process coupled with hydrocyclone[J]. Elsevier B.V., 2019,695:1-8.
|
[9] |
王杰,彭永臻,杨雄,等.不同碳源种类对好氧颗粒污泥合成PHA的影响[J]. 中国环境科学, 2015,35(8):2360-2366. Wang J, Peng Y Z, Yang X, et al. Effect of various types carbon source on the synthesis of PHA of aerobic granular sludge[J]. China Environmental Science, 2015,35(8):2360-2366.
|
[10] |
樊晓梅.碳源种类对双泥生物膜亚硝化反硝化除磷脱氮工艺的影响[J]. 沈阳建筑大学学报(自然科学版), 2016,32(4):718-725. Fan X M. Effect of carbon source types on nitrosation denitrifying phosphorus removal of two-sludge bio-film process[J]. Journal of Shenyang Jianzhu University (Natural Science), 2016,32(4):718-725.
|
[11] |
黄庆涛,宋秀兰.外加碳源对AOA-SBR工艺脱氮除磷效果的影响[J]. 工业水处理, 2017,37(9):26-29. Huang Q T, Song X L. Influences of extra carbon sources on the removal of nitrogen and phosphate by AOA⁃SBR process[J]. Industrial Water Treatment, 2017,37(9):26-29.
|
[12] |
鲍林林,李相昆,张杰.碳源类型对反硝化除磷系统的影响[J]. 环境工程学报, 2011,5(7):1567-1571. Bao L L, Li X K, Zhang J, et al. Effect of carbon sources on denitrifying phosphorus removal system[J]. Chinese Journal of Environmental Engineering, 2011,5(7):1567-1571.
|
[13] |
张淼,彭永臻,张建华,等.进水C/N对A2/O-BCO工艺反硝化除磷特性的影响[J]. 中国环境科学, 2016,36(5):1366-1375. Zhang M, Peng Y Z, Zhang J H, et al. Effect of influent C/N ratios on denitrifying phosphorus removal characteristics in the A2/O-BCO process[J]. China Environmental Science, 2016,36(5):1366-1375.
|
[14] |
Association A P H, Association A W W, Farber L. Standard methods for the examination of water and watewater, including botton sediments and sludges. 12 ed.[J]. Journal of Clinical Laboratory Analysis, 1965,53(3):361-386.
|
[15] |
Lu H B, Oehmen A, Virdis B, et al. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources[J]. Water Research, 2006,40(20):3838-3848.
|
[16] |
GB 18918-2016城镇污水处理厂污染物排放标准[S]. GB 18918-2016 Discharge standard of pollutants for municipal wastewater treatment plant[S].
|
[17] |
王少坡,李柱,赵乐丹,等.长期低聚磷条件对AO-SBR系统Accumulibacter代谢特性的影响[J]. 环境科学, 2019,40(5):2333-2340. Wang S P, Li Z, Zhao L D, et al. Effects of long-term poly-P deficiency on the metabolic properties of accumulibacter in AO-SBR system[J]. Environmental Science, 2019,40(5):2333-2340.
|
[18] |
Hou R, Luo X S, Liu C C, et al. Enhanced degradation of triphenyl phosphate (TPHP) in bioelectrochemical systems:Kinetics, pathway and degradation mechanisms[J]. Environmental pollution (Barking, Essex:1987), 2019,254(Pt A):113040.
|
[19] |
Li S Y, Fei X N, Cao L Y, et al. Insights into the effects of carbon source on sequencing batch reactors:Performance, quorum sensing and microbial community[J]. Science of the Total Environment, 2019,691:799-809.
|
[20] |
毕春雪,于德爽,杜世明,等.乙酸钠作为碳源不同污泥源短程反硝化过程亚硝酸盐积累特性[J]. 环境科学, 2019,40(2):783-790. Bi C X, Yu D S, Du S M, et al. Nitrite accumulation characteristics of partial denitrification in different sludge sources using sodium acetate as carbon source[J]. Environmental Science, 2019,40(2):783-790.
|
[21] |
郑楠,李聪,谢慧君,等.碳源类型对反硝化除磷过程中N2O产生的影响机制[J]. 山东大学学报(工学版), 2014,44(5):72-77. Zheng N, Li C, Xie H J, et al. The mechanism of effect on N2O production of carbon source types in denitrifying phosphorus removal process[J]. Journal of Shandong University (Engineering science), 2014,44(5):72-77.
|
[22] |
李亚峰,郝滢,张晓宁.碳源和硝酸盐对SBBR反硝化除磷影响的试验研究[J]. 工业安全与环保, 2012,38(1):15-18. Li Y F, Hao Y, Zhang X N. Study on the effects of carbon source and nitrate on denitrifying phosphorous removal in SBBR[J]. Industrial Safety and Environmental Protection, 2012,38(1):15-18.
|
[23] |
Wang Y Y, Geng J J, Ren Z J, et, al. Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production[J]. Bioresource Technology, 2011,102(10):5674-5684.
|
[24] |
张建华,王淑莹,张淼,等.不同反应时间内碳源转化对反硝化除磷的影响[J]. 中国环境科学, 2017,37(3):989-997. Zhang J H, Wang S Y, Zhang M, et al. Effect of conversion of internal carbon source on denitrifying phosphorus removal under different reaction time[J]. China Environmental Science, 2017,37(3):989-997.
|
[25] |
邹华,阮文权,陈坚.硝酸盐作为生物除磷电子受体的研究[J]. 环境科学研究, 2002,15(3):38-41. Zou H, Ruan W Q, Chen J. Study of using nitrate as electron acceptor in biological phosphorus removal[J]. Research of Environmental Sciences, 2002,15(3):38-41.
|
[26] |
张建华,彭永臻,张淼,等.不同电子受体配比对反硝化除磷特性及内碳源转化利用的影响[J]. 化工学报, 2015,66(12):5045-5053. Zhang J H, Peng Y Z, Zhang M, et al. Effect of different electron acceptor ratios on removal of nitrogen and phosphorus and conversion and utilization of internal carbon source[J]. CIESC Journal, 2015, 66(12):5045-5053.
|
[27] |
Zhang S H, Huang Y, Hua Y M. Denitrifying dephosphatation over nitrite:Effects of nitrite concentration, organic carbon, and pH[J]. Bioresource Technology, 2010,101(11):3870-3875.
|
[28] |
Guerrero J, Guisasola A, Baeza J A. The nature of the carbon source rules the competition between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus removal[J]. Water Research, 2011,45(16):802-4793.
|
[29] |
Luo J H, Liang H, Yan L J, et al. Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality[J]. Elsevier Ltd, 2013,148:189-195.
|
[30] |
Hu M, Wang X H, Wen X H, et al. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology, 2012,117:72-79.
|
[31] |
刘旭,王继华,车琦,等. AOA-SBR系统运行效能及高效聚磷菌的特性研究[J]. 环境科学研究, 2019,32(8):1427-1436. Liu X, Wang J H, Che Q, et al. Study of the operational efficiency of an AOA-SBR system, and the characteristics of high-efficiency phosphorus-accumulating bacteria[J]. Research of Environmental Sciences, 2019,32(8):1427-1436.
|
[32] |
杨浩,张国珍,杨晓妮,等.16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性[J]. 环境科学, 2017,38(4):1704-1716. Yang H, Zhang G Z, Yang X N, et al. Microbial community structure and diversity in cellar water by 16S rRNA high-throughput sequencing[J]. Environmental Science, 2017,38(4):1704-1716.
|
[33] |
Zhang M, Yang Q, Zhang J, et al. Enhancement of denitrifying phosphorus removal and microbial community of long-term operation in an anaerobic anoxic oxic biological contact oxidation system[J]. Elsevier B.V., 2016,122(4):456-466.
|
[34] |
Weissbrodt D G, Holliger C, Morgenroth E. Modeling hydraulic transport and anaerobic uptake by PAOs and GAOs during wastewater feeding in EBPR granular sludge reactors[J]. Biotechnology and Bioengineering, 2017,114(8):1688-1702.
|
[35] |
Ong Y H, Chua A S M, Fukushima T, et al. High-temperature EBPR process:The performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis"[J]. Elsevier Ltd, 2014,64:102-112.
|
[36] |
邱立平,王广伟,张守彬,等.强化生物除磷系统中聚磷菌与聚糖菌的种群分析及代谢机制研究进展[J]. 环境污染与防治, 2010,32(10):79-84. Qiu L P, Wang G W, Zhang S B, et al. Advances in the species analysis and biochemical metabolic mechanism of polyphosphate accumulating orga nisms and gly-cogen accumulating organisms[J]. Environmental Pollution & Control, 2010,32(10):79-84.
|
|
|
|