|
|
Effect of inoculated sludge and pH on the anaerobic degradation of sodium carboxymethyl cellulose as well as microbial community analysis |
BAN Qiao-ying1,2, ZHANG Si-yu1, WANG Yang3, ZHANG Li-guo1,2, YAN Rui-feng1,2 |
1. College of Environment and Resource, Shanxi University, Taiyuan 030006, China; 2. Shanxi Laboratory for Yellow River, Taiyuan 030006, China; 3. Xi'an Water Supply Corporation Limited, Xi'an 710082, China |
|
|
Abstract In order to reveal the anaerobic degradation efficiency of sodium carboxymethyl cellulose (CMC-Na), the effects of different types of inoculation sludge and initial pH on the anaerobic degradation of CMC-Na were investigated by batch culture. The response of microbial community on initial pH was revealed by Illumina MiSeq sequencing. The results showed that the flocculent sludge had strong hydrolysis and fermentation acid-producing capacity under the initial CMC-Na concentration of 5g/L condition. However, this system was unfavorable for syntrophic acetogenesis and methanogenesis, resulting in the methane yield was reached 10.0mL/g CMC-Na. On the contrary, the high methane fermentation capacity of the granular sludge made the methane yield reached 100.2mL/g CMC-Na. The effects of initial pH on anaerobic degradation of CMC-Na showed that the methane production was significantly inhibited by initial pH 4.5 and 9.5. However, the methane yield reached the maximum (123.4 and 123.2mL/g CMC-Na) at the initial pH 7.5 and 8.5. Illumina MiSeq sequencing showed that the microbial composition in different initial pH conditions was significantly different. At initial pH 7.5, Metanothrix and Metanobacterium were the dominant methanogens, while Macellibacteroides, Petromonas, Trichococcus, Anaerofilum and Brooklawnia were the dominant fermentation acid-producing bacteria. When the initial pH was 4.5 or 9.5, Metanosarcina also became a dominant genus, and the relative abundance of the main fermentation acid-producing bacteria was changed significantly.
|
Received: 09 January 2023
|
|
|
|
|
[1] |
Perez J, Dorado J M, Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin:an overview[J]. International Microbiology, 2002,5(2):53-63.
|
[2] |
王惟帅,杨世琪.羧甲基纤维素钠的制备及改性研究[J]. 合成纤维, 2018,47(10):28-30. Wang W S, Yang S Q. Preparation and modification of sodium carboxymethylcellulose[J]. Synthetic Fiber in China, 2018,47(10):28-30.
|
[3] |
吴淑茗,柯萍萍,黄俊祥,等.羧甲基纤维素钠的研究进展[J]. 化学工程与设备, 2018,10(10):246-247. Wu S M, Ke P P, Huang J X, et al. Research progress of sodium carboxymethylcellulose[J]. Chemical Engineering and Equipment, 2018,10(10):246-247.
|
[4] |
王艳华.钻井废弃泥浆中羧甲基纤维素钠的分析方法及降解技术研究[D]. 长安:长安大学, 2009. Wang Y H. Studies on the analysis method and degrading technology of carbo xymethyl cellulose in the drilling waste fluids[D]. Xi¢an:Chang'an University, 2009.
|
[5] |
陈静,匡成兵.纤维素降解真菌的分离筛选[J]. 西南大学学报(自然科学版), 2016,38(8):22-26. Chen J, Kuang C B. Isolation and screening of cellulose-degrading fungi[J]. Journal of Southwest University (Natural Science Edition), 2016,38(8):22-26.
|
[6] |
牛明芬,武肖媛,于海娇,等.牛粪纤维素降解菌的筛选与初步鉴定[J]. 江苏农业科学, 2014,42(11):393-395. Niu M F, Wu X Y, Yu H J. et al. Screening and preliminary identification of cellulose-degrading bacteria in cow dung[J]. Jiangsu Agricultural Science, 2014,42(11):393-395.
|
[7] |
乔健敏,郑重,岳林芳,等.湿地土壤中纤维素降解菌的分离筛选研究[J]. 畜牧与饲料科学, 2019,40(10):9-13. Qiao J M, Zheng Z, Yue L F. et al. Isolation and screening of cellulose-degrading bacteria in wetland soil[J]. Animal Husbandry and Feed Science, 2019,40(10):9-13.
|
[8] |
班巧英,岳立峰,李建政,等.萘厌氧降解菌群的富集及氧化还原介体的强化[J]. 中国环境科学, 2020,40(7):3150-3155. Ban Q Y, Yue L F, Li J Z, et al. Enrichment of naphthalene anaerobic degrading bacterial consortium and enhancement by redox mediators[J]. China Environmental Science, 2020,40(7):3150-3155.
|
[9] |
国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 北京:中国环境科学出版社, 2012:27-30. State Environmental Protection Administration. Water and wastewater monitoring and analysis methods[M]. Beijing:China Environmental Science Press, 2002:27-30.
|
[10] |
高文军,李卫红,王喜明,等.3,5-二硝基水杨酸法测定蔓菁中还原糖和总糖含量[J]. 中国药业, 2020,29(9):113-116. Gao W J, Li W H, Wang X M. et al. Determination of reducing sugar and total sugar in turnip by 3,5-dinitrosalicylic acid colorimetr[J]. China Pharmaceuticals, 2020,29(9):113-116.
|
[11] |
Owen W F, Stuckey D C, Healy J B, et al. Bioassay for monitoring biochemical methane potential and anaerobic toxicity[J]. Water Research, 1979,13:485−492.
|
[12] |
陈广银,曹杰,常志州,等.有机酸预处理对麦秸理化特性及生物产沼气的影响[J]. 生态环境学报, 2015,24(2):336-342. Chen G Y, Cao J, Chang Z J, et al. Effects of organic acid pretreatment on physical and chemical characteristics of wheat straw and biological biogas production[J]. Acta Energiae Solaris Sinica, 2015,24(2):336-342.
|
[13] |
林旭萌,宿程远,陈政鹏,等.不同结构芳香酸对厌氧颗粒污泥特性与微生物群落的影响[J]. 环境科学学报, 2021,41(6):2099-2108. Lin X M, Su C Y, Chen Z P, et al. Effects of different structures aromatic acids on physicochemical properties and microbial community of anaerobic granular sludge[J]. Acta Scientiae Circumstantiae, 2021,41(6):2099-2108.
|
[14] |
李晓玲,彭永臻,韩博涛,等.不同污泥协同香蕉秸秆中温厌氧发酵中pH对产酸的影响[J]. 环境工程, 2019,37(2):153-157. Li X L, Peng Y Z, Han B T, et al. Effect of pH on production of acid in medium tempetature anaerobic fermentation on sewage sludge and banana straw[J]. Environmental Engineering, 2019,37(2):153-157.
|
[15] |
王祥锟,闵祥发,李建政,等.产氢产乙酸和产甲烷反应对厌氧消化的限速作用[J]. 中国环境科学, 2016,36(10):2997-3002. Wang Y K, Min X F, Li J Z, et al. Rate-limiting of hydrogen-producing acetogenesis to anaerobic digestion compared with methanogenesis.[J]. China Environmental Science, 2016,36(10):2997-3002.
|
[16] |
孙正一.污泥生物炭对厌氧颗粒污泥乙酸型产甲烷过程的影响[D]. 昆明:昆明理工大学, 2022. Sun Z Y. Effect of sludge biochar on methanogenic processes in anaerobic granular sludge[D]. Kunming:Kunming University of Science and Technology, 2022.
|
[17] |
Li J, Ban Q, Zhang L, et al. Syntrophic propionate degradation in anaerobic digestion:a review[J]. International Journal of Agricultural and Biology, 2012,5:843-850.
|
[18] |
Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process:A review[J]. Bioresource Technology, 2008,99(10):4044-4064.
|
[19] |
陈兴.不同pH对哈茨木霉NJAU4742分解木质纤维素的影响[D]. 南京:南京农业大学, 2021. Chen X. Effects of different pH on the decomposition of lignocellulose by Trichoderma harzica NJAU4742[D]. Nanjing:Nanjing Agricultural University, 2021.
|
[20] |
张云,萨如拉,包桂荣,等.秸秆降解菌系的筛选及其对酸碱度的响应[J]. 中国农学通报, 2022,38(28):21-27. Zhang Y, Sa R L, Bao G R. et al. Straw degrading bacterial strains:Screening and their response to pH[J]. Chinese Agricultural Science Bulletin, 2022,38(28):21-27.
|
[21] |
孙津鸿,张书廷,姚艳.活性污泥缓冲性能研究[J]. 安全与环境学报, 2015,15(1):199-202. Sun J H, Zhang S T, Yao Y. On the buffering performance of activated sludge[J]. Journal of Safety and Environment, 2015,15(1):199-202.
|
[22] |
昌盛,刘枫.不同pH下糖蜜废水的厌氧产酸发酵类型及微生物群落结构解析[J]. 环境科学研究, 2016,29(9):1370-1377. Chang S, Liu F. Analysis of the dynamics of the microbial community and changing of acidic fermentation type of an anaerobic reactor treating refinery molasses wastewater under different controlled pH levels[J]. Research of Environmental Sciences, 2016,29(9):1370-1377.
|
[23] |
Ban Q Y, Li J, Zhang L G, et al. Phylogentic diversity of methanogenic archaea and kinetics of methane production at slightly acidic conditions of an anaerobic sludge[J]. International Journal of Agricultural and Biology, 2013,15:347-351.
|
[24] |
Liu Y, Whitman W B. Metabolic, Phylogenetic and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008,1125:171-189.
|
[25] |
梅翔,陈娟,毕良绣,等.稻秆负荷与pH对稻秆厌氧发酵产酸系统启动过程的影响[J]. 环境工程学报, 2013,7(9):3548-3554. Mei X, Chen J, Bi L X, et al. Effect of rice straw loading rate and p H on startup of anaerobic fermentation system for production of acids[J] Chinese Journal of Environmental Engineering, 2013,7(9):3548-3554.
|
[26] |
孟蓉.厌氧-好氧-微电解-BAF组合工艺处理羧甲基纤维素生产废水[D]. 合肥:合肥工业大学, 2017. Meng R. Treatment of CMC wastewater by A/O-microelectrolysis BAF process[D]. Hefei:Hefei University of Technology, 2017.
|
[27] |
Antwi P, Li J, Boadi P O, Meng J, et al. Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB[J]. Bioresource Technology, 2017,235:348-357.
|
[28] |
Maspolim Y, Zhou Y, Guo C, et al. Determination of the archaeal and bacterial communities in two-phase and single-stage anaerobic systems by 454pyrosequencing[J]. Journal of Environmental Science. 2015,36:121-129.
|
[29] |
Paster B J, Dewhirst F E, Olsen I, et al. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria[J]. Journal of Bacteriology, 1994,176:725-732.
|
[30] |
Jabari L, Gannoun H, Cayol J L, et al., Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters[J]. International Journal of Systematic and Evolutionary Microbiology, 2012,62:2522-2527.
|
[31] |
Zellner G, Stackebrandt E, Nagel D, et al. Anaerofilum pentosovorans gen. nov., sp. nov., and Anaerofilum agile sp. nov., two new, strictly anaerobic, mesophilic, acidogenic bacteria from anaerobic bioreactors[J]. International Journal of Systematic Bacteriology, 1996,46:871-875.
|
[32] |
Willis A T, Anaerobic Bacteriology (Third Edition)[M], UK:Butterworth-Heinemann, 1977:173-207.
|
[33] |
王艳飞.厌氧消化过程中温度对产甲烷代谢途径及微生物群落结构变化的影响研究[D]. 昆明:云南师范大学, 2019. Wang Y F. The effects of temperature on methanogenic metabolic pathways and microbial community during the processes of anaerobic digestion[D]. Kunming:Yunnan Normal University, 2019.
|
|
|
|