|
|
Reductive dissolution and phase transformation of jarosite residues by SRB |
ZHOU Yi-chen1, YANG Hui-fen1, SONG Ying-liang1, SUN Qi-wei1, GAO Pu1, SONG Zhen-Guo2, YANG Hang2 |
1. Department of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. State Key Laboratory of Mineral Processing Science and Technology, Beijing 102628, China |
|
|
Abstract The reduction and phase transformation of jarosite residues were investigated by measuring the solute parameters, phase transformation and microbial community evolution during the reduction process with the mixed microbial community dominated by SRB, obtained by domestication. The results showed that under the action of SRB, the content of SO42- in the residues continuously decreased, the solution pH slightly increased, the oxidation-reduction potential (ORP) continuously lowered, the Fe2+ magnified significantly, while Pb2+ and Zn2+ were only slightly dissolved. The sulfate minerals such as jarosite and gypsum in the residues were gradually reduced by the SRB community, thus resulting in their disappearance, and the characteristic peaks of secondary minerals such as markinite(FeS) and vivianite (Fe3(PO4)2(H2O)8) appeared. The relative abundance of SRB increased, and gradually SRB became the dominant strains in the culture system, But the genus in which SRB was predominantly present had evolved from citrobacter to desulfofarcimen. These results demonstrate the feasibility of SRB to be used to reduce jarosite residues and further convert metals into sulfide, provide a theoretical basis for the recovery of valuable metals in the residues by the biological-sulfide flotation.
|
Received: 09 November 2022
|
|
|
|
|
[1] Wu J, Chai L, Lin Z, et al. Fe(II)-induced transformation of Jarosite residues generated from zinc hydrometallurgy: Influence on metals behaviors during acid washing [J].Hydrometallurgy, 2021,200: 105523. [2] Wang Y, Yang H, Zhang G, et al. Comprehensive recovery and recycle of jarosite residues from zinc hydrometallurgy [J].Chemical Engineering Journal Advances, 2020,3:100023. [3] Chen T, Cabri L. Mineralogical overview of iron control in hydrometallurgical processing [J].Iron control in hydrometallurgy, 1986:19-55. [4] Deng L, Ren W, Li M, et al. Photoelectrochemical and energy storage properties for metal sulfides regulated by biomineralization of sulfate reducing bacteria [J].Journal of Cleaner Production, 2022,340: 130741. [5] Chen H-R, Zhang D-R, Nie Z-Y, et al. Reductive dissolution of jarosite by inorganic sulfur compounds catalyzed by Acidithiobacillus thiooxidans [J].Hydrometallurgy, 2022,212:105908. [6] Saxena R, Hardainiyan S, Singh N, et al.: Chapter 21-Prospects of microbes in mitigations of environmental degradation in the river ecosystem, Madhav S, Kanhaiya S, Srivastav A, Singh V, Singh P, editor, Ecological Significance of River Ecosystems: Elsevier, 2022:429-454. [7] J. m. odom, Rivers singleton. The Sulfate-Reducing Bacteria: Contemporary Perspectives [M].New York: Springer, 1993. [8] 焦玲洁,李咏梅,魏海娟,等.铁及其化合物控制污泥厌氧消化VSCs机理研究进展[J].中国环境科学, 2023,43(7):3454-3463. Jiao L J, Li Y M, Wei H J, et al. A review on the mechanism of adding iron and iron compounds to control volatile sulfur compounds during anaerobic digestion of sludge [J].China Environmental Science, 2023,43(7):3454-3463. [9] Gao K, Jiang M, Guo C, et al. Reductive dissolution of jarosite by a sulfate reducing bacterial community: Secondary mineralization and microflora development [J].Science of The Total Environment, 2019, 690:1100-1109. [10] 吴熙,胡学伟,宁平,等.基于硫循环的烟气生化脱硫及硫磺回收的过程机理[J].中国环境科学, 2019,39(3):954-959. Wu X, Hu X W, Ning P, et al. Biochemical desulfurization of flue gas and process mechanism of sulfur recovery based on sulfur cycle [J].China Environmental Science, 2019,39(3):954-959. [11] A. Pellerin G A, A. Marietou, A.V. Turchyn, B.B. Jørgensen. The effect of temperature on sulfur and oxygen isotope fractionation by sulfate reducing bacteria (Desulfococcus multivorans) [J].FEMS Microbiol. Lett., 2020,367(9):2020. [12] 蒲佳洪,罗学刚,王经明,等.混合硫酸盐还原菌的筛选及其最适生长条件的研究[J].湖北农业科学, 2020,59(8):54-57,70. Pu J H, Luo X G, Wang J M, et al. Screening of mixed sulfate reducing bacteria and study on its optimal growth conditions [J].Hubei Agricultural Sciences, 2020,59(8):54-57,70. [13] Postgate J R. The Sulfate-Reducing Bacteria [M].Cambridge: Cambridge University Press, 1984. [14] 温新萍.重铬酸钾容量法测定Fe2+、Fe3+含量在安徽重新集铁矿矿石质量研究中的应用[J].西部资源, 2022,(4):162-164. Wen X P. Application of potassium dichromate capacity method to determine Fe2+ and Fe3+ content in the quality study of iron ore recollected in Anhui Province [J].Western Resources, 2022,(4):162-164. [15] Peng Z X, He H J, Yang C P, et al. Biological treatment of wastewater with high concentrations of zinc and sulfate ions from zinc pyrithione synthesis [J].Transactions of Nonferrous Metals Society of China, 2017,27(11):2481-2491. [16] 陈永明,唐谟堂,杨声海,等.NaOH分解含铟铁矾渣新工艺[J].中国有色金属学报, 2009,19(7):1322-1331. Chen Y M, Tang M T, Yang S H, et al. Novel technique of decomposition of ammonium jarosite bearing indium in NaOH medium [J].Chinese Journal of Nonferrous Metals, 2009,19(7):1322-1331. [17] Patiño F, Salinas E, Cruells M, et al. Alkaline decomposition– cyanidation kinetics of argentian natrojarosite [J].Hydrometallurgy, 1998,49(3):323-336. [18] Mireles I, Reyes I A, Flores V H, et al. Kinetic Analysis of the Decomposition of the KFe3 (SO4)2-x(CrO4) -x(OH)6Jarosite Solid Solution in Ca (OH) 2Medium [J].Journal of the Brazilian Chemical Society, 2016,27:1014-1025. [19] Caporaso J G, Lauber C L, Walters W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms [J].The ISME journal, 2012,6(8):1621-1624. [20] 胡凡,陈元彩,胡勇有,等.硫酸盐还原菌原位合成纳米硫化亚铁还原Cr(Ⅵ) [J].化工环保, 2022,42(1):61-67. Hu F, Chen Y C, Hu Y Y, et al. ln-situ synthesis of Nano-FeS by sulfate reducting bacteria for Cr(VI) reduction [J].Chemical Environmental Protection, 2022,42(1):61-67. [21] Maihatchi Ahamed A, Pons M N, Ricoux Q, et al. New pathway for utilization of jarosite, an industrial waste of zinc hydrometallurgy [J].Minerals Engineering, 2021,170:107030. [22] Widdel F. Microbiology and ecology of sulfate-and sulfur-reducing bacteria [M].New York (1988): Wiley, 1988. [23] Cao J, Zhang G, Mao Z, et al. Precipitation of valuable metals from bioleaching solution by biogenic sulfides [J].Minerals Engineering, 2009,22(3):289-295. [24] Zegeye A, Huguet L, Abdelmoula M, et al. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity [J].Geochimica et Cosmochimica Acta, 2007,71(22):5450-5462. [25] Zeng Y, Wang H, Guo C, et al. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture [J].Environmental Pollution, 2018,242:738-748. [26] 黄帅辰,左剑恶,陈磊,等.排水管道沉积物微生物群落及环境因子分析[J].中国环境科学, 2020,40(12):5369-5374. Hang J C, Zuo J E, Chen L, et al. Analysis of microbial communities and environmental factors in sewer sediments [J].China Environmental Science, 2020,40(12):5369-5374. [27] Larry l. barton. Sulfate-Reducing Bacteria [M].New York: plenum press, 1995. [28] 王爱杰,任南琪,刘伟,等.产酸脱硫反应器中SRB种群的功能与地位[J].中国环境科学, 2001,21(2):24-28. Wang A J, Ren N Q, Liu W, et al. The role of sulfate reducing bacteria population in acidogenic-desulfate bioreactor [J].China Environmental Science, 2001,21(2):24-28. [29] Bingjie O, Xiancai L, Huan L, et al. Reduction of jarosite by Shewanella oneidensis MR-1and secondary mineralization [J].Geochimica et Cosmochimica Acta, 2014,124:54-71. [30] Beech I B, Cheung C W S. Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions [J].International Biodeterioration & Biodegradation, 1995,35(1):59-72. [31] Braissant O, Decho A W, Dupraz C, et al. Exopolymeric substances of sulfate‐reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals [J].Geobiology, 2007,5(4):401-411. [32] Donald R, Southam G. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite [J].Geochimica et Cosmochimica Acta, 1999,63(13):2019-2023. [33] 李荣强,王帅,张海秀,等.沼渣与硫酸亚铁共处置含铬土壤的协同机制研究[J].中国环境科学, 2022,42(5):2229-2237. Li R Q, Wang S, Zhang H X, et al. Investigation on the oynergistic mechanism of co-disposal of chromium-containing soil by digestate and ferrous sulfate [J].China Environmental Science, 2022,42(5):2229-2237. [34] Bertel D, Peck J, Quick T J, et al. Iron transformations induced by an acid-tolerant Desulfosporosinus species [J].Applied and environmental microbiology, 2012,78(1):81-88. [35] Senko J M, Zhang G, Mcdonough J T, et al. Metal Reduction at Low pH by a Desulfosporosinus species: Implications for the Biological Treatment of Acidic Mine Drainage [J].Geomicrobiology Journal, 2009,26(2):71-82. [36] Lohmayer R, Kappler A, Lösekann-Behrens T, et al. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum [J].Applied and Environmental Microbiology, 2014,80(10):3141-3149. [37] 胡鑫,杨宏,方小月,等.硫酸盐还原菌的富集及其对酸性矿山废水的适应性研究[C]//中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场, 2021:7. Hu X, Yang H, Fang X Y, et al. Study on the enrichment of sulfate-reducing bacteria and its adaptability to acid mine drainage [C]//2021 Science and Technology Annual Conference of Chinese Society of Environmental Sciences-Environmental Engineering Technology Innovation and Application Branch Venue, 2021:7. [38] Özverdi A, Erdem M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide [J].Journal of Hazardous Materials, 2006,137(1):626-632. [39] Schröder-Wolthoorn A, Kuitert S, Dijkman H, et al. Application of sulfate reduction for the biological conversion of anglesite (PbSO4) to galena (PbS) [J].Hydrometallurgy, 2008,94(1):105-109. [40] Labrenz M, Druschel G K, Thomsen-Ebert T, et al. Formation of Sphalerite (ZnS) Deposits in Natural Biofilms of Sulfate-Reducing Bacteria [J].Science, 2000,290(5497):1744-1747. [41] Ziegenbalg S B, Brunner B, Rouchy J M, et al. Formation of secondary carbonates and native sulphur in sulphate-rich Messinian strata, Sicily [J].Sedimentary Geology, 2010,227(1):37-50. [42] 徐亦寒.微生物还原分解硫酸盐矿物和铁氧化物:矿物溶解性的制约[D].合肥:合肥工业大学, 2017. Xu Y H, Constraint of mineral solubility on the microbial reductive decomposition of sulfate minerals and iron oxides [D].Hefei: Hefei University of Technolog, 2017. [43] Zhou L, Liu J, Dong F. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage [J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017,173:544-548. [44] Picard A, Gartman A, Clarke D R, et al. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite [J].Geochimica et Cosmochimica Acta, 2018,220:367-384. [45] Watanabe M, Kojima H, Fukui M. Review of Desulfotomaculum species and proposal of the genera Desulfallas gen. nov., Desulfofundulus gen. nov., Desulfofarcimen gen. nov. and Desulfohalotomaculum gen. nov [J].International Journal of Systematic and Evolutionary Microbiology, 2018,68(9):2891-2899. [46] 赵毅,杨景亮,任洪强,等.含硫酸盐高浓度有机废水生物处理技术[J].中国环境科学, 1999,19(3):281-284. Zhao Y, Yang J L, Ren H Q, et al. A study on biological treatment technology for high strength sulfate-organic wastewater [J].China Environmental Science, 1999,19(3):281-284. |
|
|
|