A single metal Pd/γ-Al2O3 catalyst and a bimetallic Pd-Ce/γ-Al2O3 catalyst were prepared by equal volume impregnation method to investigate the effect of CeO2 doping on the catalytic oxidation of toluene. The specific surface area, surface morphology and redox properties of the catalyst were characterized with N2 desorption, SEM and H2-TPR. It was found that the doping of CeO2 reduced the specific surface area of Pd/γ-Al2O3 catalyst to a certain extent, but increased the pore density of 10nm, and the catalyst still maintained the mesoporous structure. When 4% CeO2 was added (mass fraction, the same below), the specific surface area of ??the catalyst was reduced to 165m2/g, and there was a certain degree of clogging in the pores, which hindered the diffusion of pollutants and reaction products, and reduced the catalytic performance of the catalyst. The H2-TPR results showed that there is a strong synergistic effect between Pd and Ce. CeO2 adjacent to PdO was more likely to open Ce-O bond, which was 0.3compared with single metal 0.2% Pd/γ-Al2O3 catalyst. The catalyst of%CeO2 had a stronger reduction peak, indicating that the introduction of CeO2 provided more surface oxygen vacancies for the catalyst and enhances the catalytic oxidation ability of the catalyst. in which the T10 and T90 were reduced by 10℃ and 40℃ respectively.
任思达, 梁文俊, 王昭艺, 杜晓燕, 李坚, 何洪. Ce掺杂对Pd/γ-Al2O3催化燃烧甲苯性能的影响[J]. 中国环境科学, 2019, 39(7): 2774-2780.
REN Si-da, LIANG Wen-jun, WANG Zhao-yi, DU Xiao-yan, LI Jian, HE Hong. Effect of Ce doping on the performance of Pd/γ-Al2O3 catalytic combustion of toluene. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(7): 2774-2780.
王艳美,朱天乐,樊星.低浓度苯系物在室温下的MnOx/Al2O3催化O3氧化[J]. 中国环境科学, 2009,29(8):806-810. Wang Y, Zhu T, Fan X. MnOx/Al2O3 catalyzed ozonation for low-concentration BTX removal at room temperature[J]. China Environmental Science, 2009,29(8):806-810.
[2]
江梅,邹兰,李晓倩,等.我国挥发性有机物定义和控制指标的探讨[J]. 环境科学, 2015,36(9):3522-3532. Su M, Zou L, Li X, et al. Definition and control indicators of volatile organic compounds in China[J]. Environment Science, 2015,36(9):3522-3532.
[3]
Dumanoglu Y, Kara M, Altiok H, et al. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region[J]. Atmospheric Environment, 2014,98:168-178.
[4]
Zhang X, Xue Z, Li H, et al. Ambient volatile organic compounds pollution in China[J]. Journal of Environmental Sciences, 2017, 55:69-75.
[5]
Kamal M S, Razzak S A, Hossain M M. Catalytic oxidation of volatile organic compounds (VOCs)-A review[J]. Atmospheric Environment, 2016,140:117-134.
[6]
Fan Z, Zhang Z, Fang W, et al. Low-temperature catalytic oxidation of formaldehyde over Co3O4 catalysts prepared using various precipitants[J]. Chinese Journal of Catalysis, 2016,37(6):947-954.
[7]
Zhang C, Wang C, Zhan W, et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts[J]. Applied Catalysis B:Environmental, 2013,129:509-516.
[8]
Ye Z, Giraudon J M, Nuns N, et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation[J]. Applied Catalysis B:Environmental, 2018,223:154-166.
[9]
Meng Q, Liu J, Weng X, et al. In situ valence modification of Pd/NiO nano-catalysts in supercritical water towards toluene oxidation[J]. Catalysis Science & Technology, 2018,8(7):1858-1866.
[10]
Chen J, Chen X, Xu W, et al. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chemical Engineering Journal, 2017,330:281-293.
[11]
Peng R, Li S, Sun X, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Applied Catalysis B:Environmental, 2018,220:462-470.
[12]
de Castro T P, Silveira E B, Rabelo-Neto R C, et al. Study of the performance of Pt/Al2O3 and Pt/CeO2/Al2O3 catalysts for steam reforming of toluene, methane, and mixtures[J]. Catalysis Today, 2018,299:251-262.
[13]
Li W, Ye H, Liu G, et al. The role of graphene coating on cordierite-supported Pd monolithic catalysts for low-temperature combustion of toluene[J]. Chinese Journal of Catalysis, 2018,5(39):946-954.
[14]
Barakat T, Rooke J, Chlala D, et al. Oscillatory behavior of Pd-Au catalysts in toluene total oxidation[J]. Catalysts, 2018,8(12):574.
[15]
Yang H, Deng J, Liu Y, et al. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2-Al2O3 for toluene oxidation[J]. Journal of Molecular Catalysis A:Chemical, 2016,414:9-18.
[16]
Fu X, Liu Y, Yao W, et al. One-step synthesis of bimetallic Pt-Pd/MCM-41mesoporous materials with the superior catalytic performance for toluene oxidation[J]. Catalysis Communications, 2016,83:22-26.
[17]
Li W, Ye H, Liu G, et al. The role of graphene coating on cordierite-supported Pd monolithic catalysts for low-temperature combustion of toluene[J]. Chinese Journal of Catalysis, 2018,39(5):946-954.
[18]
林涛,万克柔,程杰,等.低浓度甲苯催化燃烧蜂窝陶瓷催化剂的制备[J]. 山东化工, 2018,47(5):55-57. Lin T, Wang K, Cheng J, et al. Preparation of catalysts applied to the catalytic combustion of low concentration toluene[J]. Shangdong Chemcial Industry, 2018,47(5):55-57.
[19]
Ilieva L, Venezia A, Petrova P, et al. Effect of Y modified ceria support in mono and bimetallic Pd-Au catalysts for complete benzene oxidation[J]. Catalysts, 2018,8(7):283.
[20]
Liu P, Zhao Y, Qin R, et al. A vicinal effect for promoting catalysis of Pd1/TiO2:supports of atomically dispersed catalysts play more roles than simply serving as ligands[J]. Science Bulletin, 2018,63(11):675-682.
[21]
Li W, Ye H, Liu G, et al. The role of graphene coating on cordierite-supported Pd monolithic catalysts for low-temperature combustion of toluene[J]. Chinese Journal of Catalysis, 2018,39(5):946-954.
[22]
Huang S, Zhang C, He H. Effect of pretreatment on Pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature[J]. J Environ Sci (China), 2013,25(6):1206-1212.
[23]
孙梦君,柳丽芬,杨凤林.β-环糊精/Ce/TiO2光催化氧化气相甲苯[J]. 中国环境科学, 2008,28(7):593-598. Sun M, Liu L, Yang F. Photocatalytie oxidation of toluene gas using β-CD modified Ce/TiO2[J]. China Environmental Science, 2008, 28(7):593-598.
[24]
Liao H, Zuo P, Liu M. Study on the correlation between the surface active species of Pd/cordierite monolithic catalyst and its catalytic activity[J]. Materials Science and Engineering:B, 2016,211:45-52.
[25]
曹利,黄学敏,冯燕.掺杂CeO2的CuMnOx复合氧化物催化剂的制备及对甲苯催化燃烧性能研究[J]. 西安建筑科技大学学报(自然科学版), 2010,42(5):729-733. Cao L, Huang X, Feng Y. Preparation of CuMnOx composite oxide catalyst doped with CeO2 and its catalytic performance for toluene[J]. J. Xi'an Univ. of Arch. &. Tech.(Natural Science Edition), 2010, 42(5):729-733.
[26]
何丽芳,廖银念,陈礼敏,等.纳米CeO2催化氧化甲苯的形貌效应研究[J]. 环境科学学报, 2013,33(9):2412-2421. He L, Liao Y, Chen L, et al. Shape effect of ceria nanocrystals with various morphologies on toluene catalytic oxidation[J]. Acta Scientiae Circumstantiae, 2013,33(9):2412-2421.
[27]
焦向东,斌盛,陈梦霞,等. Pd-Pt-Ce/Al2O3催化剂在VOC净化处理中的催化性能[J]. 工业催化, 2016,42(5):31-33. Jiao X, Bin S, Chen M, et al. Catalytic performance of Pd-Pt-Ce/Al2O3 catalysts for VOC puri6cation treatment[J]. Industrial Catalysis, 2016,42(5):31-33.
[28]
Zuo S, Sun X, Lv N, et al. Rare earth-modified kaolin/NaY-supported Pd-Pt bimetallic catalyst for the catalytic combustion of benzene[J]. ACS Applied Materials & Interfaces, 2014,6(15):11988-11996.
[29]
胡凌霄,王莲,王飞,等. Pd/γ-Al2O3催化剂催化氧化邻-二甲苯[J]. 物理化学学报, 2017,33(8):1681-1688. Hu L X, Wang L, Wang F, et al. Catalytic oxidation of o-xylene over Pd/γ-Al2O3 catalysts[J]. Acta Physica Sinica, 2017,33(8):1681-1688.
[30]
胡嘉,刘昕,苏伟康,等. PVP辅助分散对Pd/SBA-15催化剂上甲苯催化燃烧性能的影响[J]. 环境工程学报, 2018,12(11):3116-3123. Hu J, Liu X, Su W, et al. PVP assisted dispersion on toluene catalytic combustion on Pd/SBA-15catalyst effect of burning performance[J]. Chinese Journal of Environmental Engineering, 2018,12(11):3116-3123.
[31]
黄敬敬,贾志刚,刘翻艳. Ce改性Pd基整体式催化剂的结构特征及其甲烷催化燃烧性能[J]. 工业催化, 2013,21(5):23-29. Huang J, Jia Z, Liu F. Catalytic combustion of lean methane over Pd/γ-Al2O3/Cord monolith catalysts modified by Ce[J]. Industrial Catalysis, 2013,21(5):23-29.
[32]
Tidahy H L, Hosseini M, Siffert S, et al. Nanostructured macro-mesoporous zirconia impregnated by noble metal for catalytic total oxidation of toluene[J]. Catalysis Today, 2008,137(2-4):335-339.
[33]
Giraudon J M, Elhachimi A, Wyrwalski F, et al. 21Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene[J]. Applied Catalysis B:Environmental, 2007, 75(3/4):157-166.
[34]
Gil S, Garcia-Vargas J, Liotta L, et al. Catalytic oxidation of propene over Pd catalysts supported on CeO2, TiO2, Al2O3, and M/Al2O3Oxides (M=Ce, Ti, Fe, Mn)[J]. Catalysts, 2015,5(2):671-689.
[35]
López J M, Gilbank A L, García T, et al. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation[J]. Applied Catalysis B:Environmental, 2015,174-175:403-412.
[36]
Liu L, Song Y, Fu Z, et al. Effect of preparation method on the surface characteristics and activity of the Pd/OMS-2catalysts for the oxidation of carbon monoxide, toluene, and ethyl acetate[J]. Applied Surface Science, 2017,396:599-608.
[37]
Si R, Flytzani-Stephanopoulos M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angewandte Chemie International Edition, 2008,47(15):2884-2887.
[38]
Vayssilov G N, Lykhach Y, Migani A, et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles[J]. Nature Materials, 2011,10(4):310-315.
[39]
Cheng Z, Chen Z, Li J, et al. Mesoporous silica-pillared clays supported nanosized Co3O4-CeO2 for catalytic combustion of toluene[J]. Applied Surface Science, 2018,459:32-39.