Measuring the recycling potential of spent aircraft in China
XIONG Xin1,2, ZENG Xian-lai1, HU Zhao-ji2
1. School of Environment, Tsinghua University, Beijing 100084, China; 2. School of Resources & Environment, Nanchang University, Nanchang, Jiangxi 330031, China
Abstract:To clarify the obsolescent mechanism and recycling potential of spent aircraft in China, we considered the five typical aircraft types in this study. First, the retention coefficient method is used to measure the generation of spent aircraft and then to estimate the recycling potential of valuable resources (e.g., ferrous, nonferrous, and rare metals) in spent aircraft. The main findings were identified as follows:the potential weight of spent aircraft grew rapidly from 472 tons in 2015 to 1034 tons in 2020; the economic potential of spent aircraft increased from 6.3million tons in 2015 to 15million tons in 2020. Among all aircraft types, Boeing 737 and Airbus A320 have the largest scrap volume, and nonferrous metals account for the majority proportion of aircraft. Therefore, the relevant recycling enterprises can focus upon these two types of aircraft when planning the future capacity allocation, and foster the recycling technology of nonferrous metals.
张婉冰,张付申.3D打印技术在固体废弃物资源循环中的应用[J]. 中国环境科学, 2021,41(5):2299-2310. Zhang W B, Zhang F S. Application of 3D printing technology in the resource recycling of solid wastes[J]. China Environmental Science, 2021,41(5):2299-2310.
[2]
曾现来,李金惠.城市矿山开发及其资源调控:特征、可持续性和开发机理[J]. 中国科学:地球科学, 2018,48(3):288-298. Zeng X L, Li J H. Urban mining and its resources adjustment:characteristics, sustainability, and extraction[J]. Scientia Sinica Terrae, 2018,48(3):288-298.
[3]
李之钦,李商略,庄绪宁,等.微波焙烧强化废锂离子电池中的金属回收研究[J]. 中国环境科学, 2021,41(10):4712-4719. Li Q Z,Li S L,Zhuang X N, et al. Research on the effect of microwave roasting on recovery of valuable metals from cathode materials of spent lithiumion batteries[J]. China Environmental Science, 2021, 41(10):4712-4719.
[4]
Zeng X, Xiao T, Xu G, et al. Comparing the costs and benefits of virgin and urban mining[J]. Journal of Management Science and Engineering, 2022,7(1):98-106.
[5]
Lyushui, Zuo, Chang, et al. Strategic evaluation of recycling high-tech metals from urban mines in China:An emerging industrial perspective[J]. Journal of Cleaner Production, 2019,208:697-708.
[6]
Woidasky J, Klinke C, Jeanvré S. Materials Stock of the Civilian Aircraft Fleet[J]. Recycling, 2017,2(4):21-29.
[7]
徐亚,孙淑娜,王琪,等.固废填埋长期环境安全和寿命预测研究综述[J]. 中国环境科学, 2022,42(4):1954-1962. Xu Y, Sun S N, Wang Q, et al. Research status and prospect of long-term environmental safety and life prediction of solid waste landfill[J]. China Environmental Science, 2022,42(4):1954-1962.
[8]
Keivanpour S, Kadi D A, Mascle C. End of life aircrafts recovery and green supply chain (a conceptual framework for addressing opportunities and challenges)[J]. Management Research Review, 2015,38(10):1098-1124.
[9]
Junior F S D O, Fernandes E, Bahiense L, et al. A practical approach to support end-of-life commercial aircraft parking, market relocation, retirement and decommissioning strategic decisions[J]. International Journal of Production Research, 2020:1-20.
[10]
Kuong I H, Li J, Zhang J, et al. Estimating the evolution of urban mining resources in Hong Kong, up to the Year 2050[J]. Environmental Science & Technology, 2019,53(3):1394-1403.
[11]
浅谈改革开放40年中国交通发展.https://baijiahao.baidu.com/s?id=1615447825909033054&wfr=spider&for=pc[EB/OL]. On China's transportation development in the past 40 years of reform and opening up.https://baijiahao.baidu.com/s?id=1615447825909033054&wfr=spider&for=pc[EB/OL].
[12]
国家统计局.https://data.stats.gov.cn/[EB/OL]. National Bureau of Statistics. https://data.stats.gov.cn/[EB/OL].
[13]
交通运输部.https://www.mot.gov.cn/2021wangshangzhibo/gxb4/[EB/OL]. Ministry of Transporthttps://www.mot.gov.cn/2021wangshangzhibo/gxb4/[EB/OL].
[14]
曾现来.中国典型高端装备循环利用潜力评估及政策指示[C]//面向增材制造与新一代信息技术的高端装备工程管理国际论坛征文汇编, 2020 Zeng X L. Measuring the recycling potential of high-end equipment in China and its implications[C]//International Forum on high end equipment engineering management for additive manufacturing and new generation information technology, 2020.
[15]
Keivanpour S, Ait Kadi D, Mascle C. End-of-life aircraft treatment in the context of sustainable development, lean management, and global business[J]. International Journal of Sustainable Transportation, 2016, 11(5):357-380.
[16]
Keivanpour S, Ait-Kadi D, Mascle C. Toward a strategic approach to end-of-life aircraft recycling projects a research agenda in transdisciplinary context[J]. Journal of Management and Sustainability, 2013,3(3):76-95.
[17]
Asmatulu E, Twomey J, Overcash M. Evaluation of recycling efforts of aircraft companies in Wichita[J]. Resources, Conservation and Recycling, 2013,80:36-45.
[18]
王祝堂.报废飞机的回收[J]. 轻合金加工技术, 2013,41(10):24. Wang Z T. Recycling of waste aircraft[J]. Light Alloy Fabrication Technology, 2013,41(10):24.
宋璐璐,陈伟强,代敏.中国汽车,船舶和家电中钢铁的存量与流量[J]. 自然资源学报, 2020,35(4):895-907. Song L L, Chen W Q, Dai M. Stocks and flows of steel in automobiles, vessels and household appliances in China[J]. Journal of Natural Resources, 2020,35(4):895-907.
[21]
Tan Q, Li J. A study of waste fluorescent lamp generation in mainland China[J]. Journal of Cleaner Production, 2014,81:227-233.
[22]
Li B, Yang J, Lu B, et al. Estimation of retired mobile phones generation in China:A comparative study on methodology[J]. Waste Manag, 2015,35:247-54.
[23]
Araujo M G, Magrini A, Mahler C F, et al. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil[J]. Waste Manag, 2012,32(2):335-42.
[24]
Liu Z, Xu Z, Huang H, et al. A study of waste liquid crystal display generation in mainland China[J]. Waste Manag Res, 2016,34(1):58-66.
[25]
Song Q, Li J, Liu L, et al. Measuring the generation and management status of waste office equipment in China:A case study of waste printers[J]. Journal of Cleaner Production, 2016,112:4461-4468.
[26]
Zhang L, Yuan Z, Bi J, et al. Estimating future generation of obsolete household appliances in China[J]. Waste Management & Research, 2012,30(11):1160-1168.
[27]
黄慧婷,童昕,蔡毅,等.电器电子产品废弃量估算方法再评估[J]. 生态经济, 2019,35(11):211-216,229. Huang H T, Tong X, Cai Y, et al. Re-examination on estimation methods for WEEE generation in China[J]. Ecological Economy, 2019,35(11):211-216,229.
[28]
何逸林,廖小红,田晖.我国家用电器理论报废量测算方法研究及结果分析[J]. 家电科技, 2010,(10):76-77. He Y L, Liao X H, Tian H. The calculation method of theoretical scrapped quantity of domestic electrical appliances and its analysis of results[J]. Journal of Appliance Science & Technology, 2010,(10):76-77.
[29]
蒋晓斌,江健,陈定江,等.中国乘用车塑料的动态物质流分析[J]. 中国环境科学, 2020,40(9):4106-4144. Jiang X B, Jiang J, Chen D J, et al. Dynamic material flow analysis of Chinese passenger car plastics[J]. China Environmental Science, 2020,40(9):4106-4144.
[30]
Zeng X, Gong R, Chen W, et al. Uncovering the recycling potential of "New" WEEE in China[J]. Environmental Science & Technology, 2016,50(3):1347-58.
[31]
袁烨,黄虹,程骋.基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测[J]. 中国科学:技术科学, 2022,52(1):198-212. Yuan Y, Huang H, Cheng C. Remaining useful life prediction of the aircraft engine based on the GRU-GAN network with a feature attention mechanism[J]. Scientia Sinica Technologica, 2022,52:198-212.
[32]
Al-Bahkali E A, Elkenani H, Souli M. Failure and fatigue life due to random vibration in aircraft applications[J]. Multiphysics Simulations in Automotive and Aerospace Applications, 2021:131-154.
[33]
程一伟,朱海平,吴军.基于嵌套长短期记忆网络的机械装备剩余使用寿命预测方法[J]. 中国科学:技术科学, 2022,52(1):76-87. Cheng Y W, Zhu H P, Wu J. A remaining useful life prediction method based on nested long short-term memory network for mechanical equipment[J]. Scientia Sinica Technologica, 2022,52:76-87.
[34]
Jm A, Nba B, Yi Z C, et al. Generalized hierarchical Bayesian inference for fatigue life prediction based on multi-parameter Weibull models[J]. International Journal of Fatigue, 2022,162(3):1-13.
[35]
Fernandez C A, Castillo E, Blason S, et al. Generalization of the weibull probabilistic compatible model to assess fatigue data into three domains:lcf, hcf and vhcf[J]. International Journal of Fatigue, 2022, 159:159.
[36]
张安迎,童昕,曾现来.中国报废汽车中铂族金属回收潜力估算[J]. 中国环境科学, 2020,40(11):4821-4830. Zhang A Y, Tong X, Zeng X L.Recycling potentials of platinum-group metals from end-of-life vehicle in China[J]. China Environmental Science, 2020,40(11):4821-4830.
[37]
郝瀚,王贺武,欧阳明高.我国汽车存活规律研究[J]. 中国科学:技术科学, 2011,41(3):301-305. Hao H, Wang H W, Ouyang M G, et al. Vehicle survival patterns in China[J]. Scientia Sinica Technologica, 2011,41(3):301-305.
[38]
Buchner H, Laner D, Rechberger H, et al. Dynamic material flow modeling:An effort to calibrate and validate aluminum stocks and flows in Austria[J]. Environmental Science & Technology, 2015, 49(9):5546-54.
[39]
Saltelli A, Tarantola S, Campolongo F, et al. Sensitivity analysis in practice:A guide to assessing scientific models[M]. Sensitivity Analysis in Practice:A Guide to Assessing Scientific Models, 2004.
[40]
Guo M, Murphy R J. LCA data quality:Sensitivity and uncertainty analysis[J]. The Science of the Total Environment, 2012,435-436(OCT.1):230-243.
[41]
Janssen H. Monte-Carlo based uncertainty analysis:Sampling efficiency and sampling convergence[J]. Reliability Engineering & System Safety, 2013,109:123-132.
[42]
Jones M C, Balakrishnan N. Simple functions of independent beta random variables that follow beta distributions[J]. Statistics & Probability Letters, 2021,170(6):74-90.
[43]
Eylem A, Michael O, Janet T. Recycling of aircraft:State of the art in 2011[J]. Journal of Industrial Engineering, 2013,2013:1-8.
[44]
张玲.飞机拆解与再利用研究进展[J]. 再生资源与循环经济, 2014,7(11):25-27. Zhang L.Advances in research on dismantlement and reutilization of aircraft[J]. Renewable Resources and Circular Economy, 2014,7(11):25-27.