Tall tower CO2 concentration simulation using the WRF-STILT model
HU Cheng1,2, ZHANG Mi1,2, XIAO Wei1,2, WANG Yong-wei1,2, WANG Wei1,2, TIM Griffis3, LIU Shou-dong1,2, LI Xu-hui1
1. Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change(ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, China;
2. Key Laboratory of Meteorological Disaster, Ministry of Education(KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CICFEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China;
3. University of MinnesotaTwin Cities, Saint Paul 55108, U. S. A
By using high spatial and temporal resolution EDGAR fossil emissions (13 categories) and Carbon Tracker NEE flux,WRF-STILT model was evaluated with one year (2008) CO2 concentration observations at a homogeneous agricultural underlying surface,which located in U.S.corn belt.The results showed that this model could capture the strong seasonal and daily variation,with RMSE be 10.6×10-6,R=0.44(n=7784,P<0.001).The linear regression slope of growing season concentration enhancement was 1.08(R=0.52,P<0.001),indicating high consistency,while the intercept (7.26×10-6) reflects the overestimation of fossil emission or underestimation of NEE.During this year round,observed enhancement was 4.83×10-6,smaller than sum of the fossil enhancement contribution (6.61×10-6) and NEE contribution (3.23×10-6).The oil production and refineries and energy industry contributed 2.55×10-6(38.6%) and 1.43×10-6(21.6%) of all fossil enhancements,separately.Biomass burning only contributes 0.06×10-6 to the total enhancement which was ignorable compared with fossil and NEE.At the end,it can be concluded that this method can be used to retrieve regional scale greenhouse gas flux in China.
胡诚, 张弥, 肖薇, 王咏薇, 王伟, Tim Griffis, 刘寿东, 李旭辉. 基于WRF-STILT模型对高塔CO2浓度的模拟研究[J]. 中国环境科学, 2017, 37(7): 2424-2437.
HU Cheng, ZHANG Mi, XIAO Wei, WANG Yong-wei, WANG Wei, TIM Griffis, LIU Shou-dong, LI Xu-hui. Tall tower CO2 concentration simulation using the WRF-STILT model. CHINA ENVIRONMENTAL SCIENCECE, 2017, 37(7): 2424-2437.
Ballantyne A P, Alden C B, Miller J B, et al. Increase in observed net carbon dioxide uptake by land and oceans during the past 50years.[J]. Nature, 2012,488(7409):70.
[2]
IPCC (2013) Climate Change 2013:the physical science basis, IPCC Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
[3]
Fitzgerald G J, Tausz M, O'Leary G, et al. Elevated atmospheric[CO2] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves[J]. Global Change Biology, 2016,22(6):2269-2284.
[4]
Houghton R A. Balancing the Global Carbon Budget[J]. Earth and Planetary Sciences, 2007,35(35):313-347.
[5]
Quéré C L, Peters G P, Andres R J, et al. Global carbon budget 2013[J]. Earth System Science Data, 2014,6(7):235-263.
[6]
IPCC, Summary for policymakers of climate change 2007:The physical science basis[R]. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 2007.
Chen B, Chen J M, Mo G, et al. Comparison of regional carbon flux estimates from CO2concentration measurements and remote sensing based footprint integration[J]. Global Biogeochemical Cycles, 2008,22(2):148-161.
[9]
Nisbet E, Weiss R. Top-Down Versus Bottom-Up[J]. Science, 2010,328(5983):1241-1243.
[10]
Zhang X, Lee X, Griffis T J, et al. Estimating regional greenhouse gas fluxes:an uncertainty analysis of planetary boundary layer techniques and bottom-up inventories[J]. Atmospheric Chemistry & Physics, 2014,14(19):10705-10719.
[11]
Xiao J, Zhuang Q, Baldocchi D D, et al. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data[J]. Agricultural & Forest Meteorology, 2008,148(11):1827-1847.
[12]
Desai A R, Noormets A, Bolstad P V, et al. Influence of vegetation and seasonal forcing on carbon dioxide fluxes across the Upper Midwest, USA:Implications for regional scaling[J]. Agricultural & Forest Meteorology, 2008,148(2):288-308.
[13]
Tang X, Wang Z, Liu D, et al. Estimating the net ecosystem exchange for the major forests in the northern United States by integrating MODIS and Ameri Flux data[J]. Agricultural & Forest Meteorology, 2012,156(1):75-84.
Yuan W P, Liu S, Zhou G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology, 2007,143(3/4):189-207.
[16]
Griffis T J, Lee X, Baker J M, et al. Reconciling the differences between top-down and bottom-up estimates of nitrous oxide emissions for the U.S. Corn Belt[J]. Global Biogeochemical Cycles, 2013,27(3):746-754.
[17]
Gerbig C, Lin J C, Wofsy S C, et al. Toward constraining regional-scale fluxes of CO2, with atmospheric observations over a continent:2. Analysis of COBRA data using a receptor-oriented framework[J]. Journal of Geophysical Research Atmospheres, 2003,108(D24):4757-ACH6.
[18]
Peters W, Jacobson A R, Sweeney C, et al. An atmospheric perspective on North American carbon dioxide exchange:CarbonTracker[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(48):18925-30.
[19]
Peylin P, Law R M, Gurney K R, et al. Global atmospheric carbon budget:results from an ensemble of atmospheric CO2 inversions[J]. Biogeosciences Discussions, 2013,10(3):5301-5360.
[20]
Piao S, Ciais P, Friedlingstein P, et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming.[J]. Nature, 2008,451(7174):49.
Mallia D V, Lin J C, Urbanski S, et al. Impacts of upwind wildfire emissions on CO, CO2, and PM2.5, concentrations in Salt Lake City, Utah[J]. Journal of Geophysical Research Atmospheres, 2015,120(1):147-166.
[23]
Nehrkorn T, Henderson J, Leidner M, et al. WRF simulations of the urban circulation in the Salt Lake City area for CO2 modeling[J]. Journal of Applied Meteorology and Climatology, 2013,52:323-340.
[24]
Peylin P, Law R M, Gurney K R, et al. Global atmospheric carbon budget:results from an ensemble of atmospheric CO2 inversions[J]. Biogeosciences Discussions, 2013,10(3):5301-5360.
[25]
Boon A, Broquet G, Clifford D J, et al. Analysis of the potential of near ground measurements of CO2 and CH4 in London, UK for the monitoring of city-scale emissions using an atmospheric transport model[J]. Atmospheric Chemistry & Physics, 2015, 15(22):33003-33048.
[26]
Lin J C, Gerbig C, Wofsy S C, et al. A near-field tool for simulating the upstream influence of atmospheric observations:The Stochastic Time-Inverted Lagrangian Transport (STILT) model[J]. Journal of Geophysical Research Atmospheres, 2003, 108(4493):1211-1222.
[27]
Chen Z, Griffis T J, Millet D B, et al. Partitioning N2O Emissions within the US Corn Belt using an Inverse Modeling Approach[J]. Global Biogeochemical Cycles, 2016,30,1192-1205. doi:10.1002/2015GB005313.
[28]
Hong S Y, Dudhia J, Chen S H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation[J]. Monthly Weather Review, 2004,132(1):103-120.
[29]
Iacono M J, Delamere J S, Mlawer E J, et al. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J]. Journal of Geophysical Research Atmospheres, 2008,113(D13):1395-1400.
[30]
Dudhia J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale TwoDimensional Model[J]. Journal of the Atmospheric Sciences, 1989,46(46):3077-3107.
[31]
Chen F, Dudhia J. Coupling an Advanced Land Surface Hydrology Model with the Penn State NCAR MM5Modeling System. Part I:Model Implementation and Sensitivity[J]. Monthly Weather Review, 2001,129(4):587-604.
[32]
Hong S Y, Noh Y, Dudhia J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes[J]. Monthly Weather Review, 2006,134(9):2318.
[33]
Kain J S. The Kain Fritsch Convective Parameterization:An Update[J]. Journal of Applied Meteorology, 2004,43(1):170-181.
[34]
Pillai D, Gerbig C, Kretschmer R, et al. Comparing Lagrangian and Eulerian models for CO2 transport-a step towards Bayesian inverse modeling using WRF/STILT-VPRM[J]. Atmospheric Chemistry & Physics, 2012,12(1):1267-1298.
[35]
Giglio L, Randerson J T, Werf G R V D. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4)[J]. Journal of Geophysical Research Biogeosciences, 2013,118(1):317-328.
[36]
Gurney K R, Mendoza D L, Zhou Y, et al. The Vulcan Project:High Resolution Fossil Fuel Combustion CO2 Emissions Fluxes for the United States[J]. Environmental Science & Technology, 2009,43(14):5535-41.
[37]
European Commission (2009), Joint Research Centre/Netherlands Environmental Assessment Agency, Emission Database for Global Atmospheric Research (EDGAR), release version 4.0.
[38]
Kaminski T, Rayner P J, Heimann M, et al. On aggregation errors in atmospheric transport inversions[J]. Journal of Geophysical Research Atmospheres, 2001,106(D5):4703-4715.
[39]
Hu L, Millet D B, Baasandorj M, et al. Isoprene emissions and impacts over an ecological transition region in the U.S. Upper Midwest inferred from tall tower measurements[J]. Journal of Geophysical Research Atmospheres, 2015,120:3553-3571.
[40]
Miller J B, Lehman S J, Montzka S A, et al. Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2[J]. Journal of Geophysical Research:Atmospheres, 2012,117(D8):8302.
[41]
Nassar R, Napier-Linton L, Gurney K R, et al. Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets[J]. Journal of Geophysical Research Atmospheres, 2013,118(2):917-933.
[42]
Ciais P, Paris J D, Marland G, et al. The European carbon balance. Part 1:fossil fuel emissions[J]. Global Change Biology, 2010,16(5):1395-1408.
[43]
Liu Z, Bambha R P, Pinto J P, et al. Toward verifying fossil fuel CO2 emissions with the CMAQ model:motivation, model description and initial simulation[J]. Journal of the Air & Waste Management Association, 2014,64(4):419-35.
[44]
Su Y K, Millet D B, Hu L, et al. Constraints on Carbon Monoxide Emissions Based on Tall Tower Measurements in the U.S. Upper Midwest[J]. Environmental Science & Technology, 2013, 47(15):8316-24.
[45]
Ahmadov R, Gerbig C, Kretschmer R, et al. Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2[J]. Biogeosciences, 2009,6(5):807-817.