Distribution characteristics and exchange flux of nitrogen and phosphorus at thesediment-water interface of Daheiting Reservoir in winter
WEN Shuai-long1,2, WU Tao3, YANG Jie3, LI Xin1,4, GONG Wan-qing1,2, ZHONG Ji-cheng1
1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing 210008, China; 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Tianjin Hydraulic Research Institute, Tianjin 300061, China; 4. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
摘要 本文研究了大黑汀水库表层沉积物碳氮磷污染负荷及分布特征,利用Peeper (pore water equilibriums)技术获取沉积物-水界面氮磷剖面特征,分析大黑汀水库间隙水氮磷分布的空间差异;采集沉积物无扰动柱样用静态培养法对其水土界面氮磷交换速率进行估算.结果表明:沉积物中TN、TP和TOC的含量分别在729~5894mg/kg、1312~2439mg/kg和0.5%~5.6%之间,沉积物中氨氮(NH4+-N)、硝酸盐氮(NO3--N)、亚硝酸盐氮(NO2--N)和活性磷(PO43--P)含量分别在0.6~202.9、34.4~168.3、0.1~0.3和16.1~75.2mg/kg之间,主要表现为下游含量高于上游,空间分布特征明显;沉积物C/N表明该水库有机质主要来源于水体内部,与人类网箱养殖活动有关.间隙水中NH4+-N和PO43--P浓度远高于上覆水,表明大黑汀水库间隙水具有向上覆水体扩散营养盐的潜力.在垂直方向上间隙水中NH4+-N浓度随深度的增加而变大,PO43--P浓度具有在0~4cm快速增加,之后表现出逐渐降低的趋势.静态释放结果表明,沉积物-水界面NH4+-N和PO43--P的交换通量分别为3.5~110.5mg/(m2·d)和0.1~1.6mg/(m2·d),NO3--N和NO2--N交换通量在-112.5~157.2mg/(m2·d)和0.04~0.94mg/(m2·d)之间.NH4+-N、NO3--N和PO43--P在下游表现出较高的释放速率.较高的沉积物内源负荷使得大黑汀水库沉积物具有较大的向上覆水释放营养盐的潜力,改善水库沉积物污染状况是治理大黑汀水库水体环境的必要之举.
Abstract:In this paper, the pollution load and distribution characteristics of carbon, nitrogen and phosphorus in surface sediments of Daheiting Reservoir were studied. The characteristics of nitrogen and phosphorus profiles at the sediment-water interface were obtained by pore water equilibriums technology, and the spatial differences of NH4+-N and PO43--P in the interstitial water of Daheiting Reservoir were analyzed. The results showed that the contents of TN, TP and TOC in sediments were 729~5894mg/kg, 1312~2439mg/kg and 0.5%~5.6%, respectively. The contents of NH4+-N, NO3--N, NO2--N and PO43--P in sediments were 0.6~202.9, 34.4~168.3, 0.1~0.3 and 16.1~75.2mg/kg, respectively, and the spatial distribution was significantly different. Sediment C/N ratio indicated that the substances inwater were the source of organic matter because of human cage culture activities. The concentration of NH4+-N and PO43--P in the interstitial water was much higher than that in the overlying water, indicated that nutrients have the potential to diffuse from interstitial water to overlying water. In the vertical direction, the concentration of NH4+-N in interstitial water increases with depth, and PO43--P increases rapidly at 0~4cm, then decreases gradually. The exchange fluxes of NH4+-N and PO43--P across the sediment-water interface were 3.5~110.5mg/(m2·d) and 0.1~1.6mg/(m2·d), respectively. The exchange fluxes of NO3--N and NO2--N were -112.5~157.2mg/(m2·d) and 0.04~0.94mg/(m2·d), respectively. NH4+-N, NO3--N and PO43--P showed higher exchange fluxes downstream. Higher sediment endogenous load made the sediments of Daheiting Reservoir have greater potential to release nutrients to overlying water,so controlling the pollution state of sediment is a necessary measure to manage the water environment of Daheiting Reservoir.
文帅龙, 吴涛, 杨洁, 李鑫, 龚琬晴, 钟继承. 冬季大黑汀水库沉积物-水界面氮磷赋存特征及交换通量[J]. 中国环境科学, 2019, 39(3): 1217-1225.
WEN Shuai-long, WU Tao, YANG Jie, LI Xin, GONG Wan-qing, ZHONG Ji-cheng. Distribution characteristics and exchange flux of nitrogen and phosphorus at thesediment-water interface of Daheiting Reservoir in winter. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(3): 1217-1225.
Huang L, Fang H, Reible D. Mathematical model for interactions and transport of phosphorus and sediment in the Three Gorges Reservoir[J]. Water Research, 2015,85:393-403.
[2]
M?ynarczyk N, Bartoszek M, Polak J, et al. Forms of phosphorus in sediments from the Gocza?kowice Reservoir[J]. Applied Geochemistry, 2013,37(11):87-93.
[3]
Moss B, Kosten S, Meerhoff M, et al. Allied attack:climate change and eutrophication[J]. Inland Waters Journal of the International Society of Limnology, 2011,1(2):101-105.
[4]
张路,范成新,王建军,等.长江中下游湖泊沉积物氮磷形态与释放风险关系[J]. 湖泊科学, 2008,20(3):263-270. Zhang L, Fan C X, Wang J J, et al. Nitrogen and phosphorus forms and release risks of lake sediments from the middle and lower reaches of the Yangtze River[J]. Journal of Lake Sciences, 2008,20(3):263-270.
[5]
张路,范成新,王建军,等.太湖草藻型湖区间隙水理化特性比较[J]. 中国环境科学, 2004,24(5):556-560. Zhang L, Fan C X, Wang J J, et al. Comparison of physicochemical characters of pore water in grass/algae type zone in lake Taihu[J]. China Environmental Science, 2004,24(5):556-560.
[6]
Yang Z, Wang L, Liang T, et al. Nitrogen distribution and ammoni a release from the overlying water and sediments of Poyang Lake, China[J]. Environmental Earth Sciences, 2015,74(1):771-778.
[7]
Huisman J, Matthijs H C P, Visser P M. Harmful Cyanobacteria[M]. Springer-Verlag GmbH, 2005:1-23.
[8]
Diaz R J, Rosenberg R. Spreading Dead Zones and Consequences for Marine Ecosystems[J]. Science, 2008,321(5891):926-929.
[9]
雷沛,张洪,王超,等.沉积物-水界面污染物迁移扩散的研究进展[J]. 湖泊科学, 2018,30(6):1489-1508. Lei P, Zhang H, Wang C, et al. Migration and diffusion for pollutants across the sediment-water interface in lakes:A review[J]. Journal of Lake Sciences, 2018,30(6):1489-1508.
[10]
Yu J H, Fan C X, Zhong J C, et al. Effects of sediment dredging on nitrogen cycling in Lake Taihu, China:Insight from mass balance based on a 2-year field study[J]. Environmental Science & Pollution Research International, 2015,23(4):3871-3883.
[11]
Liu H H, Bao L J, Zhang K, et al. Novel passive sampling device for measuring sediment-water diffusion fluxes of hydrophobic organic chemicals,[J]. Environmental Science & Technology, 2013,47(17):9866-9873.
[12]
Cheng S, Liu H, Logan B E. Increased performance of singlechamber microbial fuel cells using an improved cathode structure[J]. Electrochemistry Communications, 2006,8(3):489-494.
[13]
Tengberg A, Stahl J H, Gust G, et al. Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics[J]. Progress in Oceanography, 2004,60(1):1-28.
[14]
Wang P F, Yao Y, Wang C, et al. Impact of macrozoobenthic bioturbation and wind fluctuation interactions on net methylmercury in freshwater lakes[J]. Water Research, 2017,124:320.
[15]
范成新,张路,杨龙元,等.湖泊沉积物氮磷内源负荷模拟[J]. 海洋与湖沼, 2002,33(4):370-378. Fan C X, Zhang L, Yang L Y, et al. Simulation of internal loadings of nitrogen and phosphorus in a lake[J]. Oceanologia et Limnologia Sinica, 2002,33(4):370-378.
[16]
Berelson W M, Heggie D, Longmore A, et al. Benthic nutrient recycling in Port Phillip Bay, Australia[J]. Estuarine Coastal and Shelf Science, 1998,46(6):917-934.
[17]
Sondergaard M, Rikke B, Erik J. Persistent internal phosphorus loading during summer in shallow eutrophic lakes[J]. Hydrobiologia, 2013,710(1):95-107.
[18]
Teasdale P R, Batley G E, Apte S C, et al. Pore water sampling with sediment peepers[J]. Trac Trends in Analytical Chemistry, 1995, 14(6):250-256.
[19]
文帅龙,龚婉晴,吴涛,等.于桥水库沉积物-水界面氮磷剖面特征及交换通量[J]. 环境科学, 2018,38(5):1-14. Wen S L, Gong W Q, W U T, et al. Distribution Characteristics and Fluxes of Nitrogen and Phosphorus at the Sediment-water Interface of Yuqiao Reservoir[J]. Environmental Science, 2018,(5):1-14.
[20]
Graca B, Burska D, Matuszewska K. The impact of dredging deep pits on organic matter decomposition in sediments[J]. Water Air & Soil Pollution, 2004,158(1):237-259.
[21]
Knösche R. Organic sediment nutrient concentrations and their relationship with the hydrological connectivity of floodplain waters (River Havel, NE Germany)[J]. Hydrobiologia, 2006,560(1):63-76.
[22]
Zhu Y, Wu F, He Z, et al. Characterization of organic phosphorus in lake sediments by sequential fractionation and enzymatic hydrolysis[J]. Environmental Science & Technology, 2013,47(14):7679-7687.
[23]
Ying W, Shen Z, Niu J, et al. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions[J]. Journal of Hazardous Materials, 2009,162(1):92-98.
[24]
Ye X, Wang A, Chen J. Distribution and deposition characteristics of carbon and nitrogen in sediments in a semi-closed bay area, southeast China[J]. Continental Shelf Research, 2014,90:133-141.
[25]
Li H, Song C L, Cao X Y, et al. The phosphorus release pathways and their mechanisms driven by organic carbon and nitrogen in sediments of eutrophic shallow lakes[J]. Science of the Total Environment, 2016, 572:280-288.
[26]
杨洋,刘其根,胡忠军,等.太湖流域沉积物碳氮磷分布与污染评价[J]. 环境科学学报, 2014,34(12):3057-3064. Yang Y, Liu Q G, Hu Z J, et al. Spatial distribution of sediment carbon, nitrogen and phosphorus and pollution evaluation of sediemnt in Taihu lake Basin[J]. Acta Scientiae Circumstantiae, 2014,34(12):3057-3064.
[27]
孔明,张路,尹洪斌,等.蓝藻暴发对巢湖表层沉积物氮磷及形态分布的影响[J]. 中国环境科学, 2014,34(5):1285-1292. Kong M, Zhang L, Yin H B, et al. Influence of algae bloom on distribution of total and speciation of nitrogen and phosphorus in the surface sediments from Lake Chaohu[J]. China Environmental Science, 2014,34(5):1285-1292.
[28]
邱祖凯,胡小贞,姚程,等.山美水库沉积物氮磷和有机质污染特征及评价[J]. 环境科学, 2016,37(4):1389-1396. Qiu Z K, Hu X Z, Yao C, et al. Pollution characteristics and evaluation of nitrogen, phosphorus and organic matter in sediments of Shanmei Reservoir in Fujian, China[J]. Environmental Science, 2016,37(4):1389-1396.
[29]
康丽娟.淀山湖沉积物碳、氮、磷分布特征与评价[J]. 长江流域资源与环境, 2012,(s1):105-110. Kang L J. Characteristics and risk evaluation of carbon, nitrogen and phosphorus in sediments of the Dianshan Lake[J]. Resources and Environment in The Yangtze Basin, 2012(s1):105-110.
[30]
Thornton S F, Mcmanus J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems:evidence from the Tay Estuary, Scotland[J]. Estuarine Coastal & Shelf Science, 1994,38(3):219-233.
[31]
王妙,王胜,唐鹊辉,等.粤西三座重要供水水库沉积物营养盐负荷与重金属污染特征[J]. 生态环境学报, 2014,(5):834-841. Wang M, Wang S, Tang Q H, et al. Characteristics of sediment Nutrients loading and heavy metals pollution in three important reservoirs from the west coast of Guangdong Province, South China[J]. Ecology and Environmental Sciences, 2014,23(5):834-841.
[32]
Fenn M E, Allen E B, Weiss S B, et al. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California[J]. Journal of Environmental Management, 2010,91(12):2404-2423.
[33]
Ja D, Hungate B A, Hedlund B P. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea[J]. Environmental Microbiology, 2011,13(8):2371-2386.
[34]
Clavero V, Izquierdo J, Fernández J, et al. Seasonal fluxes of phosphate and ammonium across the sediment-water interface in a shallow small estuary (Palmones River, southern Spain)[J]. Marine Ecology Progress, 2000,198(1):51-60.
[35]
Hopkinson C S, Giblin A E, Tucker J. Benthic metabolism and nutrient regeneration on the continental shelf of Eastern Massachusetts, USA[J]. Marine Ecology Progress, 2001,224(224):1-19.
[36]
Vittor C D, Faganeli J, Emili A, et al. Benthic fluxes of oxygen, carbon and nutrients in the Marano and Grado Lagoon (northern Adriatic Sea, Italy)[J]. Estuarine Coastal & Shelf Science, 2012, 113:57-70.
[37]
Zhang L, Wang L, Yin K, et al. Pore water nutrient characteristics and the fluxes across the sediment in the Pearl River estuary and adjacent waters, China[J]. Estuarine Coastal & Shelf Science, 2013,133(4):182-192.
[38]
Xia X, Liu T, Yang Z, et al. Dissolved organic nitrogen transformation in river water:Effects of suspended sediment and organic nitrogen concentration[J]. Journal of Hydrology, 2013,484(12):96-104.
[39]
Kaiser D, Unger D, Qiu G, et al. Natural and human influences on nutrient transport through a small subtropical Chinese estuary[J]. Science of the Total Environment, 2013,450-451(Complete):92-107.
[40]
王建军,沈吉,张路,等.云南滇池和抚仙湖沉积物-水界面营养盐通量及氧气对其的影响[J]. 湖泊科学, 2010,22(5):640-648. Wang J J, Shen J, Zhang L, et al. Sediment-water nutrient fluxes and the effects of oxygen in Lake Dianchi and Lake Fuxian,Yunnan Province[J]. Journal of Lake Sciences, 2010,22(5):640-648.
[41]
Seiki T, Izawa H, Date E. Benthic nutrient remineralization and oxygen consumption in the coastal area of Hiroshima Bay[J]. Water Research, 1989,23(2):219-228.
[42]
徐徽,张路,商景阁,等.太湖水土界面氮磷释放通量的流动培养研究[J]. 生态与农村环境学报, 2009,25(4):66-71. Xu H, Zhang L, Shang JG, et al. Study on ammonium and phosphate fluxes at the sediment-water interface of lake Taihu using flowthrough incubation[J]. Journal of Ecology and Rural Environment, 2009,25(4):66-71.
[43]
李宝,丁士明,范成新,等.滇池福保湾底泥内源氮磷营养盐释放通量估算[J]. 环境科学, 2008,29(1):114-120. Li B, Ding S M, Fan C X, et al. Estimation of releasing fluxes of sediment nitrogen and phosphorus in Fubao bay in Dianchi lake[J]. Environmental Science, 2008,29(1):114-120.
[44]
Beutel M W, Leonard T M, Dent S R, et al. Effects of aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake[J]. Water Research, 2008,42(8):1953-1962.
[45]
黄廷林,刘飞,史建超.水源水库沉积物间隙水营养盐分布特征及扩散通量[J]. 环境工程学报, 2016,10(8):4357-4363. Huang Y L, Liu F, Shi J L. Distribution features and diffusion fluxes of nutrient in interstitial water of a source water reservoir[J]. Chinese Journal of Environmental Engineering, 2016,10(8):4357-4363.
[46]
刘佳,雷丹,李琼,等.黄柏河流域梯级水库沉积物磷形态特征及磷释放通量分析[J]. 环境科学, 2018,39(4):1608-1615. Liu J, Lei D, Li Q, et al. Characteristics of phosphorus fractions and phosphate diffusion fluxes of sediments in Cascade Reservoirs of the Huangbai River[J]. Environmental Science, 2018,39(4):1608-1615.
[47]
陈友震.杜塘水库沉积物-水界面氮磷释放通量研究[D]. 福州:福建师范大学, 2011.2-5. Chen Y Z. Study on nitrogen and phosphorus release fluxes of sediment-water interface in Dutang Reservoir[D]. Fuzhou:Fujian Normal University, 2011.2-5.