Changes of humic acid in the process of decomposition of Myriophyllum spicatum
BA Cui-cui1,2, ZHANG Yi-min2, YANG Fei2, KONG Ming2, ZHANG Zhi-wei1,2, TANG Zhi-kai1,2, GU Shi-yun1,2
1. School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; 2. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
Abstract:Humic acid (HA) of submerged plant Myriophyllum spicatum was studied by parallel factor analysis method, combined with UV absorption spectroscopy, three-dimensional fluorescence spectroscopy and Fourier transform infrared spectroscopy. The change of HA in low, medium and high nutrient sediments revealed the mechanism of the effects of different nutrient sediments on the decomposing of submerged plants. The results showed that the higher was the nutrient level of the sediment, the faster was the decomposing of the foxtail algae (P<0.05), releasing more dissolved organic carbon (DOC), dissolved total nitrogrn (DTN), dissolved total phosphorus (DTP) and humus; The degree of nutrient of the sediment was positively correlated with the hydrophobicity, molecular complexity of and the molecular weight (P<0.05); HA of different nutrient sediments were identified by fluorescence containing one kind of protein component C2 and two kinds of fulvic acid components C1, C3, while fulvic acid-like components and protein-like components had similar component characteristics under different decomposition conditions; HA extracted from different nutrient sediments analyzed by infrared spectra was similar at different times, indicating that HA extracted at different decomposition conditions and times contains similar functional groups, and the extracted HA from the foxtail algae rot high nutrient sediment group contained more aromatic substances and organic phosphorus. The higher was the nutrient level of the sediment, the more beneficial was to the enrichment and sedimentation of phosphorus. The chemical structure of humic acid components in the decomposition of Myriophyllum spicatum by spectral analysis was systematically analyzed. The results can provide a theoretical reference for the ecological management and restoration of lake water environment, and for in-depth understanding of the influence mechanism of different nutrient sediments on the decomposing of submerged plants.
巴翠翠, 张毅敏, 杨飞, 孔明, 张志伟, 汤志凯, 顾诗云. 狐尾藻在不同营养底泥腐解过程中胡敏酸的变化[J]. 中国环境科学, 2019, 39(3): 1226-1236.
BA Cui-cui, ZHANG Yi-min, YANG Fei, KONG Ming, ZHANG Zhi-wei, TANG Zhi-kai, GU Shi-yun. Changes of humic acid in the process of decomposition of Myriophyllum spicatum. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(3): 1226-1236.
樊恒亮,谢丽强,宋晓梅,等.沉水植物对水体营养的响应及氮磷积累特征[J]. 环境科学与技术, 2017,40(3):42-48. Fan H L, Xie L Q, Song X M, et al. Response of submerged plants to water nutrition and accumulation of nitrogen and phosphorus[J]. Environmental science and technology, 2017,40(3):42-48.
[2]
杨凤娟,蒋任飞,饶伟民,等.沉水植物在富营养化浅水湖泊修复中的生态机理[J]. 安徽农业科学, 2016,44(26):58-61. Yang F J, Jiang R F, Rao W M, et al. Ecological mechanism of submerged plants in the restoration of eutrophicated shallow lakes[J]. Anhui agricultural science, 2016,44(26):58-61.
[3]
宋玉芝,杨美玖,秦伯强.苦草对富营养化水体中氮磷营养盐的生理响应[J]. 环境科学, 2011,32(9):2569-2575. Song Y Z, Yang M J, Qin B Q, et al. Physiological response of Vallisneria natans to nitrogen and phosphorus contents in eutrophic waterbody[J]. Environmental Science, 2011,32(9):2569-2575.
[4]
Hautier Y, Hector A. Competition for light causes plant biodiversity loss after eutrophication[J]. Science, 2009,324(5927):636-8.
[5]
张金路,段登选,王志忠.东平湖菹草大面积衰亡的危害及防治对策[J]. 环境研究与监测, 2009,(2):31-33. Zhang J L, Duan D X, Wang Z Z. Harms of large area decline of Potamogeton crispus and its control measures in Dongping lake[J]. Environmental research and monitoring, 2009,(2):31-33.
[6]
Powell H K J, Fenton E. Size fractionation of humic substances:Effect on protonation and metal binding properties[J]. Analytica Chimica Acta, 1996,334(1/2):27-38.
[7]
Koivula N, Hänninen K. Concentrations of monosaccharides in humic substances in the early stages of humification[J]. Chemosphere, 2001, 44(2):271-9.
[8]
Geraldes P, Pascoal C, Cássio F. Effects of increased temperature and aquatic fungal diversity on litter decomposition[J]. Fungal Ecology, 2012,5(6):734-740.
[9]
Polechońska L, Samecka-Cymerman A. The effect of environmental contamination on the decomposition of European frog-bit (Hydrocharis morsus-ranae, L.) in natural conditions[J]. Aquatic Botany, 2015,127(1):35-43.
[10]
武海涛,吕宪国,杨青,等.三江平原典型湿地枯落物早期分解过程及影响因素[J]. 生态学报, 2007,27(10):4027-4035. Wu H T, Lv X G, Yang Q, et al. The early decomposition process and influencing factors of typical wetland litters in Sanjiang plain[J]. Acta Ecologica Sinica, 2007,27(10):4027-4035.
[11]
Cornut J, Clivot H, Chauvet E, et al. Effect of acidification on leaf litter decomposition in benthic and hyporheic zones of woodland streams[J]. Water Research, 2012,46(19):6430-44.
[12]
Asaeda T, Le H N, Hietz P, et al. Seasonal fluctuations in live and dead biomass of Phragmites australis, as described by a growth and decomposition model:implications of duration of aerobic conditions for litter mineralization and sedimentation[J]. Aquatic Botany, 2002,73(3):223-239.
[13]
Debusk W F, Reddy K R. Litter Decomposition and Nutrient Dynamics in a Phosphorus Enriched Everglades Marsh[J]. Biogeochemistry, 2005,75(2):217-240.
[14]
Eliška R, Kate?ina H. Wetland plant decomposition under different nutrient conditions:what is more important, litter quality or site quality[J]. Biogeochemistry, 2006,80(3):245-262.
[15]
金相灿,屠清瑛.湖泊富营养化调查规范[M]. 2版.北京:中国环境科学出版社, 1990:213-215. Jin X C, Tu Q Y. Criteria for investigation of lake eutrophication[M]. Version 2. Beijing:China environmental science press, 1990:213-215.
[16]
Swift R S, Sparks D L, Page A L, et al. Organic matter characterization.[J]. Methods of soil analysis. Part 3-chemical methods. 1996.
[17]
苏冬雪,王文杰,邱岭,等.落叶松林土壤可溶性碳、氮和官能团特征的时空变化及与土壤理化性质的关系[J]. 生态学报, 2012, 32(21):6705-6714. Su D X, Wang W J, Qiu L, et al. Temporal and spatial variations of soil soluble carbon, nitrogen and functional groups in deciduous pine forests and their relationship with soil physical and chemical properties[J]. Acta ecologica Sinica, 2012,32(21):6705-6714.
[18]
Cox L, Celis R, Hermosín M C, et al. Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter.[J]. Environmental Science & Technology, 2000,34(21):4600-4605.
[19]
代静玉,秦淑平,周江敏,等.水杉凋落物分解过程中溶解性有机质的分组组成变化[J]. 生态环境学报, 2004,13(2):207-210. Dai J Y, Qin S P, Zhou J M, et al. Grouping and composition of dissolved organic matter during decomposition of metasequoia litters[J]. Journal of Ecological Environment, 2004,13(2):207-210.
[20]
张帅,崔心红,朱义,等.稻壳基生物炭对不同营养底泥理化性质、上覆水和植物生长的影响[J]. 江苏农业科学, 2017,45(22):308-313. Zhang S, Cui X H, Zhu Y, et al. Effects of rice husk-based biochar on physicochemical properties, overlying water and plant growth of different nutrient sediments[J]. Jiangsu Agricultural Science, 2017,45(22):308-313.
[21]
Jaffrain J, Gérard F, Meyer M, et al. Assessing the Quality of Dissolved Organic Matter in Forest Soils Using Ultraviolet Absorption Spectrophotometry[J]. Soil Science Society of America Journal, 2007,71(6):1851-1858.
王旭东,张一平,吕家珑,等.不同施肥条件对土壤有机质及胡敏酸特性的影响[J]. 中国农业科学, 2000,33(2):75-81. Wang X D, Zhang Y P, Lv J L, et al. Effects of different fertilization conditions on soil organic matter and humic acid characteristics[J]. Chinese Agricultural Science, 2000,33(2):75-81.
[24]
张福锁.土壤与植物营养研究新动态,第三卷[M]. 北京:农业出版社, 1995:138. Zhang F S. New developments in soil and plant nutrition, The third volume[M]. Beijing:Agricultural press, 1995:138.
[25]
胡承彪,韦立秀,韦原连,等.不同林型人工林土壤微生物区系及生化活性研究[J]. 微生物学杂志, 1990,(z1):14-20. Hu C B, Wei L X, Wei Y L, et al. Study on soil microflora and biochemical activities in different plantation types[J]. Journal of Microbiology, 1990,(z1):14-20.
[26]
来航线,程丽娟,王中科.几种微生物对土壤腐殖质形成的作用[J]. 西北农林科技大学学报(自然科学版), 1997,(6):79-82. Iai H X, Cheng L J, Wang Z K. Effects of several microorganisms on soil humus formation[J]. Journal of Northwest Agricultural and Forestry University (Science edition), 1997,(6):79-82.
Wu F, Midorikawa T, Tanoue E. Fluorescence properties of organic ligands for copper(Ⅱ) in Lake Biwa and its rivers[J]. Geochemical Journal, 2001,35(1):152-153.
[29]
汪玲玲.三维荧光光谱技术在溶解性有机物研究中的应用[J]. 环境科学与管理, 2015,40(1):153-155. Wang L L. Application of three-dimensional fluorescence spectroscopy in the study of dissolved organic compounds[J]. Environmental science and management, 2015,40(1):153-155.
[30]
Bridgeman J, Bieroza M, Baker A. The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment[J]. Reviews in Environmental Science & Bio/technology, 2011,10(3):277-290.
[31]
虞敏达,何小松,檀文炳,等.城市纳污河流有色溶解有机物时空演变特征[J]. 中国环境科学, 2016,36(1):133-142. Yu M D, He X S, Tan W B, et al. Spatial and temporal evolution characteristics of colored dissolved organic matter in polluted urban rivers[J]. China Environmental Science, 2016,36(1):133-142.
[32]
Baker A. Fluorescence properties of some farm wastes:implications for water quality monitoring[J]. Water Research, 2002,36(1):189-195.
[33]
柏林森,李向东,张彦.微山湖(下级湖)中溶解性有机质(DOM)的降解实验研究[J]. 科学技术与工程, 2015,15(5):162-169. Bai L S, Li X D, Zhang Y. Experimental study on degradation of dissolved organic matter (DOM) in weishan lake (subordinate lake)[J]. Science, Technology and Engineering, 2015,15(5):162-169.
[34]
黎烨,周聪聪,戴零星,等.滇池流域土壤活性腐殖质及其主要组分的紫外-可见与三维荧光光学特性[J]. 环境科学学报, 2017,37(3):1098-1106. Li Y, Zhou C C, Dai L X, et al. Ultraviolet-visible and threedimensional fluorescence optical properties of soil active humus and its main components in Dianchi lake basin[J]. Journal of Environmental Science, 2017,37(3):1098-1106.
[35]
Leenheer J A, Croué J P. Peer Reviewed:Characterizing Aquatic Dissolved Organic Matter[J]. Environmental Science & Technology, 2003,37(1):18A-26A.
[36]
Murphy K R, Ruiz G M, Dunsmuir W T, et al. Optimized parameters for fluorescence-based verification of ballast water exchange by ships.[J]. Environmental Science & Technology, 2006,40(7):2357-2362.
[37]
冯伟莹,朱元荣,吴丰昌,等.太湖水体溶解性有机质荧光特征及其来源解析[J]. 环境科学学报, 2016,36(2):475-482. Feng W Y, Zhu Y R, Wu F C, et al. Fluorescence characteristics and source analysis of dissolved organic matter in Taihu lake[J]. Journal of Environmental Science, 2016,36(2):475-482.
[38]
黄昌春,李云梅,王桥,等.基于三维荧光和平行因子分析法的太湖水体CDOM组分光学特征[J]. 湖泊科学, 2010,22(3):375-382. Huang C C, Li Y M, Wang Q, et al. Optical characteristics of CDOM components in taihu lake based on three-dimensional fluorescence and parallel factor analysis[J]. Lake Science, 2010,22(3):375-382.
[39]
郭卫东,黄建平,洪华生,等.河口区溶解有机物三维荧光光谱的平行因子分析及其示踪特性[J]. 环境科学, 2010,31(6):1419-1427. Guo W D, Huang J P, Hong H S, et al. Parallel factor analysis and tracer characteristics of three dimensional fluorescence spectra of dissolved organic compounds in the estuary area[J]. Environmental Science, 2010,31(6):1419-1427.
[40]
Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996,51(4):325-346.
[41]
宋晓娜,于涛,张远,等.利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J]. 环境科学学报, 2010,30(11):2321-2331. Song X N, Yu T, Zhang Y, et al. The distribution and source of dissolved organic matter in taihu lake were analyzed by three dimensional fluorescence technique[J]. Journal of Environmental Science, 2010, 30(11):2321-2331.
[42]
Yamashita Y, Jaffé R. Characterizing the Interactions between Trace Metals and Dissolved Organic Matter Using Excitation-Emission Matrix and Parallel Factor Analysis[J]. Environmental Science & Technology, 2008,42(19):7374-9.
[43]
赵伟,席北斗,魏自民,等.不同原料堆肥胡敏酸的荧光特性[J]. 环境科学研究, 2011,24(9):1042-1046. Zhao W, Xi B D, Wei Z M, et al. Fluorescence characteristics of humic acid in different compost materials[J]. Environmental Science Research, 2011,24(9):1042-1046.
[44]
张正行.有机光谱分析(精)[M]. 北京:人民卫生出版社, 2009:555. Zhang Z X. Organic spectral analysis (fine)[M]. Beijing:People's medical publishing house, 2009:555.
[45]
王菊花.微生物对土壤腐殖质形成及结构的影响研究[D]. 长春:吉林农业大学, 2007. Wang J H. Effects of microorganisms on the formation and structure of soil humus[D]. Changchun:Jilin agricultural university, 2007.
[46]
姚佳,杨飞,张毅敏,等.黑藻叶、茎腐解释放溶解性有机物的特性[J]. 中国环境科学, 2017,37(11):4294-4303. Yao J, Yang F, Zhang Y M, et al. Research on the dissolved organic matter of Hydrilla verticillata,s leaf and stem decomposition[J]. China Environmental Science, 2017,37(11):4294-4303.