n-Alkanes hydrogen isotopes in soil from the northern region, Tibetan Plateau: Implications for sources of organic matter
LI Cun-lin1,2,3, MA Su-ping1,2, CHANG Fu-xuan4, HE Xiao-bo1,5, WANG Li-hui1,3,5
1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China;
2. Key Laboratory of Petroleum Resources Research, Chinese Academy of Sciences, Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. Water Resources Department, Yangtze River Scientific Research Institute, Wuhan 430010, China;
5. State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Origins of n-alkanes in surface soil from permafrost regions in the northern part of the Tibetan Plateau were studied by the distributions of n-alkanes, and the δD values of individual n-alkanes. That the distributions of the n-alkanes showed bimodal and trimodal patterns, suggesting that they were derived from multiple sources. The long-chain n-alkanes were mainly derived from higher terrestrial plants. Those of odd carbon number (C25~C33) were lighter than those with even carbon number, which might be caused by different biosynthetic pathways. Cluster analysis indicated that the medium-chain type I n-alkanes (C21~C24) were mainly derived from higher terrestrial plants, and the medium-chain type Ⅱ n-alkanes might have originated from microorganisms such as bacteria. The medium-chain n-alkane δD values of samples FHS-10, TG2-10and TG3-10were the lightest, due to both the light δD values of water and bacteria or other microorganisms.
李存林, 马素萍, 常福宣, 何晓波, 王利辉. 青藏高原北部土壤正构烷烃氢同位素及物源意义[J]. 中国环境科学, 2019, 39(5): 2095-2105.
LI Cun-lin, MA Su-ping, CHANG Fu-xuan, HE Xiao-bo, WANG Li-hui. n-Alkanes hydrogen isotopes in soil from the northern region, Tibetan Plateau: Implications for sources of organic matter. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(5): 2095-2105.
王永莉,方小敏,白艳,等.中国气候(水热)连续变化区域现代土壤中类脂物分子分布特征及其气候意义[J]. 中国科学(D辑:地球科学), 2007,37(3):386-396. Wang Y L, Fang X M, Bai Y, et al. Distribution of lipids in modern soils from various regions with continuous climate (moisture-heat) change in China and their climate significance[J]. Science in China, Series D:Earth Sciences, 2007,37(3):386-396.
[2]
Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions:A summary of examples from the laurentian great lakes[J]. Organic Geochemistry, 2003,34(2):261-289.
[3]
Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000,31(7/8):745-749.
[4]
Duan Y, Zhao Y, Wu Y Z, et al. δD values of n-alkanes in sediments from gahai lake, Gannan, China:Implications for sources of organic matter[J]. Journal of Paleolimnology, 2016,56(2/3):95-107.
[5]
段毅,吴应忠,赵阳.青藏高原东北部尕海湖沉积物中正构烷烃及其氢同位素组成与有机质源指示意义[J]. 地质学报, 2016,90(5):1030-1039. Duan Y, Wu Y Z, Zhao Y. Composition and hydrogen isotope of n-alkanes in sediments from Gahai Lake of Qinghai-Tibet Planteau, China and their implications for organic origin[J]. Acta Geologica Sinica, 2016,90(5):1030-1039.
[6]
Duan Y, Zhao Y, Sun T, et al. Delta d values of individual n-alkanes in sediments from the chaka salt lake (China) and terrestrial plants from the surrounding area[J]. Geochemical Journal, 2014,48(3):321-329.
[7]
Sessions A L, Sylva S P, Summons R E, et al. Isotopic exchange of carbon-bound hydrogen over geologic timescales[J]. Geochimica Et Cosmochimica Acta, 2004,68(7):1545-1559.
[8]
Chikaraishi Y, Naraoka H, Poulson S R. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4and CAM) and aquatic plants[J]. Phytochemistry, 2004,65(10):1369-1381.
[9]
Feakins S J, Sessions A L. Controls on the d/h ratios of plant leaf waxes in an arid ecosystem[J]. Geochimica Et Cosmochimica Acta, 2010,74(7):2128-2141.
[10]
Sachse D, Billault I, Bowen G J, et al. Molecular paleohydrology:Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms[J]. Annual Review of Earth and Planetary Sciences, 2012,40(1):221-249.
[11]
Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J]. Geochimica Et Cosmochimica Acta, 2004,68(23):4877-4889.
[12]
Bai Y, Fang X M, Gleixner G, et al. Effect of precipitation regime on δD values of soil n-alkanes from elevation gradients-Implications for the study of paleo-elevation[J]. Organic Geochemistry, 2011,42(7):838-845.
[13]
Bai Y, Tian Q, Fang X M, et al. The "inverse altitude effect" of leaf wax-derived n-alkane δD on the northeastern Tibetan Plateau[J]. Organic Geochemistry, 2014,73(Supplement C):90-100.
[14]
Bai Y, Fang X M, Jia G D, et al. Different altitude effect of leaf wax n-alkane δD values in surface soils along two vapor transport pathways, southeastern Tibetan Plateau[J]. Geochimica Et Cosmochimica Acta, 2015,170(Supplement C):94-107.
[15]
Bai Y, Chen C H, Fang X M, et al. Altitudinal effect of soil n-alkane δD values on the eastern Tibetan Plateau and their increasing isotopic fractionation with altitude[J]. Science China Earth Sciences, 2017, 47(10):1233-1242.
[16]
Zhang G S, Pagani M, Chamberlin C, et al. Altitudinal shift in stable hydrogen isotopes and microbial tetraether distribution in soils from the Southern Alps, NZ:Implications for paleoclimatology and paleoaltimetry[J]. Organic Geochemistry, 2015,79:56-64.
[17]
Zhang X L, Xu B Q, Günther F, et al. Hydrogen isotope ratios of terrestrial leaf wax n-alkanes from the tibetan plateau:Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry[J]. Geochimica Et Cosmochimica Acta, 2017,211:10-27.
[18]
Bai Y, Fang X M, Tian Q. Spatial patterns of soil n-alkane delta d values on the tibetan plateau:Implications for monsoon boundaries and paleoelevation reconstructions[J]. Journal of Geophysical Research-Atmospheres, 2012,117(D20113):01-09.
[19]
Polissar P J, Freeman K H, Rowley, D B, et al. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers[J]. Earth and Planetary Science Letters, 2009,287(1/2):64-76.
[20]
Zhuang, G S, Brandon M T, Pagani M, et al. Leaf wax stable isotopes from Northern Tibetan Plateau:Implications for uplift and climate since 15Ma[J]. Earth and Planetary Science Letters, 2014,390:186-198.https://doi.org/10.1016/j.epsl.2014.01.003.
[21]
Jia G D, Bai Y, Ma Y J, et al. Paleoelevation of Tibetan Lunpola basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes[J]. Global and Planetary Change, 2015,126:14-22.10.1016/j.gloplacha.2014.12.007.
[22]
Hou J Z, D'Andrea W J, Huang Y S. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments[J]. Geochimica Et Cosmochimica Acta, 2008,72(14):3503-3517.
[23]
Guenther F, Aichner B, Siegwolf R, et al. A synthesis of hydrogen isotope variability and its hydrological significance at the qinghai-Tibetan Plateau[J]. Quaternary International, 2013,313-314:3-16.
[24]
田茜,方小敏,王明达.青藏高原干旱区湖泊正构烷烃氢同位素记录降水同位素[J]. 科学通报, 2017,62(7):700-710. Tian Q, Fang X M, Wang M D. Sedimentary n-alkanes record of precipitation D/H ratios in arid regions of the Tibetan Plateau[J]. Chinese Science Bulletin, 2017,62(7):700-710.
[25]
胡星,朱立平,汪勇,等.青藏高原西南部湖泊沉积正构烷烃及其单体δD的气候意义[J]. 科学通报, 2014,59(19):1892-1903. Hu X, Zhu L P, Wang Y, et al. Climatic significance of n-alkanes and their compound-specific δD values from lake surface sediments on the Southwestern Tibetan Plateau[J]. Chinese Science Bulletin, 2014, 59(19):1892-1903.
[26]
Xia Z H, Xu B Q, Muegler I, et al. Hydrogen isotope ratios of terrigenous n-alkanes in lacustrine surface sediment of the Tibetan Plateau record the precipitation signal[J]. Geochemical Journal, 2008, 42(4):331-338.
[27]
Rao Z G, Jia G D, Qiang M R, et al. Assessment of the difference between mid-and long chain compound specific δD n-alkanes values in lacustrine sediments as a paleoclimatic indicator[J]. Organic Geochemistry, 2014,76:104-117.
[28]
许丽,李江海,刘持恒,等.基于数字高程模型(DEM)的可可西里地貌及区划研究[J]. 北京大学学报(自然科学版), 2017,53(5):833-842. Xu L, Li J H, Liu H C, et al. Research on geomorphological morphology and regionalization of Hoh Xil based on digital elevation model (DEM)[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017,53(5):833-842.
[29]
周金星,易作明,李冬雪,等.青藏铁路沿线原生植被多样性分布格局研究[J]. 水土保持学报, 2007,21(3):173-177+187. Zhou J X, Yi Z M, Li D X, et al. Distribution patterns of species diversity of natural vegetation along Qinghai-Tibetan railway[J]. Joural of Soil and Water Conservation, 2007,21(3):173-177+187.
[30]
王谋,李勇,白宪洲,等.全球变暖对青藏高原腹地草地资源的影响[J]. 自然资源学报, 2004,19(3):331-336. Wang M, Li Y, Bai X Z, et al. The impact of global warming on vegetation resources in the hinterland of the Qinghai-Tibet Plateau[J]. Journal of Natural Resources, 2004,19(3):331-336.
[31]
董林水,宋爱云,周金星.青藏铁路沿线土壤有机碳和速效养分空间分异特征[J]. 干旱区资源与环境, 2016,30(11):161-166. Dong L S, Song A Y Zhou J X. Soil organic carbon and available nutrients at different transects along Qinghai-ibet railway[J]. Journal of Arid Land Resources and Environment, 2016,30(11):161-166.
[32]
谢胜波,屈建军.青藏铁路沿线植被·土壤的类型·分布及特征分析[J]. 安徽农业科学, 2013,41(19):8268-8270. Xie S B, Qu J J. Analyses on the types, distributions and characteristics of vegetation and soil along Qinghai-Tibet railway[J]. Journal of Anhui Agri. Sci., 2013,(19):8268-8270.
[33]
Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms-proposal for the domains archaea, bacteria, and eucarya[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990,87(12):4576-4579.
[34]
郭金春,马海州.湖泊生物标志物与古气候环境变化的研究进展[J]. 盐湖研究, 2008,16(4):52-58. Guo J C, Ma H Z. Advance of the lacustrine biomarkers research in paleoclimate and paleoenvironmental reconstruction[J]. Journal of Salt Lake Reserch, 2008,16(4):52-58.
[35]
张枝焕,陶澍,叶必雄,等.土壤和沉积物中烃类污染物的主要来源与识别标志[J]. 土壤通报, 2004,35(06):793-798. Zhang Z H, Tao S, Ye B X, et al. Pollution sources and identification of hydrocarbons in soil and sediment using molecular markers[J]. Chinese Journal of Soil Science, 2004,35(6):793-798.
[36]
Eglinton G, Hamilton R J. Leaf epicuticular waxes[J]. Science, 1967,156(3780):1322-1335.
[37]
Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of ellesmere lake, u.K.-i:Source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991,17(6):901-912.
[38]
Bray E E, Evans E D. Distribution of n-paraffins as a clue to recognition of source beds[J]. Geochimica Et Cosmochimica Acta, 1961,22(1):2-15.
[39]
Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustring sediments[J]. Organic Geochemistry, 1987,11(6):513-527.
[40]
Zheng Y H, Zhou W J, Meyers P A, et al. Lipid biomarkers in the zoigê-hongyuan peat deposit:Indicators of holocene climate changes in west china[J]. Organic Geochemistry, 2007,38(11):1927-1940.
[41]
Duan Y, Wu B X, Xu L, et al. Characterisation of n-alkanes and their hydrogen isotopic composition in sediments from lake qinghai, China[J]. Organic Geochemistry, 2011,42(7):720-726.
[42]
Zhou Y, Grice K, Stuart-Williams H, et al. Biosynthetic origin of the saw-toothed profile in delta(13)c and delta(2)h of n-alkanes and systematic isotopic differences between n-, iso-and anteiso-alkanes in leaf waxes of land plants[J]. Phytochemistry, 2010,71(4):388-403.
[43]
Cranwell P A. Lipid geochemistry of sediments from upton broad, a small productive lake[J]. Organic Geochemistry, 1984,7(1):25-37.
[44]
Mead R, Xu Y P, Chong J, et al. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry, 2005,36(3):363-370.
[45]
Duan Y, Xu L. Distributions of n-alkanes and their hydrogen isotopic composition in plants from lake qinghai (china) and the surrounding area[J]. Applied Geochemistry, 2012,27(3):806-814.
[46]
Chikaraishi Y, Naraoka H. Carbon and hydrogen isotope variation of plant biomarkers in a plant-soil system[J]. Chemical Geology, 2006, 231(3):190-202.
[47]
Zech M, Pedentchouk N, Buggle B, et al. Effect of leaf litter degradation and seasonality on d/h isotope ratios of n-alkane biomarkers[J]. Geochimica Et Cosmochimica Acta, 2011,75(17):4917-4928.
[48]
任佐华,张于光,李迪强,等.三江源地区高寒草原土壤微生物活性和微生物量[J]. 生态学报, 2011,31(11):3232-3238. Ren Z H, Zhang Y G, Li D Q, et al. The soil microbial activities and microbial biomass in Sanjiangyuan Alpine glassland[J]. 2011,31(11):3232-3238.
[49]
魏佳宁,马红梅,邵新庆,等.三江源区土壤微生物和土壤养分空间分布特性研究[J]. 中国土壤与肥料, 2016,(2):27-31. Wei J N, Ma H M, Shao X Q, et al. Spatical characteristics of soil microbe and soil nutrient in alpine grassland in the Three-River-Headwater-Region of Qinghai province[J]. Soil and fertilizer Sciences in China, 2016,(2):27-31.
[50]
Hren M T, Bookhagen B, Blisniuk P M, et al. Delta o-18and delta d of streamwaters across the himalaya and tibetan plateau:Implications for moisture sources and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2009,288(1/2):20-32.