Enhanced phytoremediation with the involvement of microbes and chemicals has become an alternative technique to remediate the contamination of heavy metal in soils. The combination of 0.3% sulfur and three levels of actinomycete Act 12 enhanced phytoremediation has been experimented to remediate the Cd-contaminated soil by employing Brassica juncea, a Cd-tolerant plant. The Cd accumulation in plant root and shoot part, antioxidant enzyme activities and plant root activity were measured to explore the potential mechanisms. The results showed that the combination of 0.3% sulfur and 2.0g/kg Act12 addition significantly reduced Rhizosphere pH by 14.5%. By comparison, the combination of 0.3% sulfur and 1.5g/kg Act12 addition treatment dramatically increased Cd accumulation in plant shoot by up to 79%. Act12 addition positively enhanced plant antioxidant system, and the values of CAT, POD, and SOD reached the peak in the treatment with a combination of 0.3% sulfur and 1.0g/kg Act12. Additionally, Act12 addition boosted plant root activities and reduced the content of MAD. Our study indicated that both sulfur and actinomycete Act 12 can enhance the absorption capacity of Cd by Brassica juncea, and the combination of 0.3% sulfur and 1.5g/kg Act12 addition achieved the best results in our experiments.
李荣华,沈锋,李晓龙,等.陕西某铅锌冶炼厂区及周边农田重金属污染土壤的稳定化修复理论与实践[J]. 农业环境科学学报, 2015, 34(7):1269-1276. Li R H, Sheng F, Li X L, et al. Theoretical research and immobilization practice of heavy metal polluted soil in a closed lead-zinc smelter and surrounding farmland in Tongguan, Shaanxi[J]. Journal of Agro-Environment Science, 2015,34(7):1269-1276.
[2]
Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China[J]. Microchemical Journal, 2010,94(2):99-107.
[3]
陈能场,郑煜基,何晓峰,等.《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017,36(9):1689-1692. Chen N C, Zheng Y J, He X F, et al. Analysis of the bulletin of national soil pollution survey[J]. Journal of Agro-Environment Science, 2017,36(0):1689-1692.
[4]
徐剑锋,王雷,熊瑛,等.土壤重金属污染强化植物修复技术研究进展[J]. 环境工程技术学报, 2017,7(3):366-373. Xu J F, Wang L, Xiong Y, et al. Research progress on strengthening phytoremediation technologies for heavy metals contaminated soil[J]. Journal of Environmental Engineering Technology, 2017,7(3):366-373.
[5]
王海峰,赵保卫,徐瑾,等.重金属污染土壤修复技术及其研究进展[J]. 环境科学与管理, 2009,34(11):15-20. Wang H F, Zhao B W, Xu J, et al. Technology and research progress on remediation of soils contaminated by heavy metals[J]. Environmental Science and Management, 2009,34(11):15-20.
[6]
魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J]. 生态学杂志, 2004,23(1):65-72. Wei S H, Zhou Q X. Discussion on basic principles and strengthening measures for phytoremediation of soils contaminated by heavy metals[J]. Chinese Journal of Ecology, 2004,23(1):65-72.
[7]
郑黎明,袁静.重金属污染土壤植物修复技术及其强化措施[J]. 环境科技, 2017,30(1):75-78. Zheng L M, Yuan J. Phytoremediation of soils contaminated by heavy metals and strengthening measures[J]. Environmental Science and Technology, 2017,30(1):75-78.
[8]
Gramlich A, Tandy S, Gauggel C, et al. Soil cadmium uptake by cocoa in Honduras[J]. Science of The Total Environment, 2018,612(1):370-378.
[9]
Leung H M, Wu F Y, Cheung K C, et al. Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator[J]. Journal of Hazardous Materials, 2010,181(1):497-507.
[10]
Valentinuzzi F, Cesco S, Tomasi N, et al. Influence of different trap solutions on the determination of root exudates in Lupinus albus L[J]. Biology & Fertility of Soils, 2015,51(6):757-765.
[11]
Sun L N, Zhang Y F, He L Y, et al. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland[J]. Bioresource Technology, 2010,101(2):501-509.
[12]
Naidu C K, Reddy T K R.Effect of cadmium on microorganisms and microbe-mediated mineralization process in the soil[J]. Bulletin of Environmental Contamination & Toxicology, 1988,41(5):657-63.
[13]
曾远,罗立强.土壤中特异性微生物促进植物修复重金属研究进展[J]. 岩矿测试, 2017,36(2):97-109. Zeng Y, Luo L Q. Research progress on heavy metal phytoremediation enhanced by special microorganisms in soils[J]. Rock and Mineral Analysis, 2017,36(2):97-109.
[14]
刘晓青,曹卫红,周卫红,等.农田土壤重金属污染的生物修复技术研究现状、问题及展望[J]. 天津农业科学, 2017,24(2):80-85. Liu X Q, Cao W H, Zhou W H, et al. Research status, problems and prospect of bioremediation technology of heavy metal pollution in farmland soil[J]. Tianjin Agriculture Science, 2017,24(2):80-85.
[15]
郭瞻宇.镉、锌耐性芥菜品种筛选及其耐受机理研究[D]. 杨凌:西北农林科技大学, 2018. Guo Z Y. Screening of high tolerance Cd/Zn mustard cultivars and research on the physiological mechanism[D]. Yang Ling:Northwest A&F University, 2018.
[16]
鲍士旦.土壤农化分析(第三版)[M]. 北京:中国农业出版社, 2000:25-151. BAO S D. Soil and agricultural chemistry analysis (3rd Edition)[M]. Beijing:China Agriculture Press, 2000:25-151.
[17]
刘少霞,陈贵,秦萍,等.植物体内MDA不同提取液与显色液反应条件的比较[J]. 安徽农业科学, 2007,35(10):2829-2829. Liu S X, Chen G, Qin P, et al. Comparisons on reaction conditions of different extraction solvents for plant endogenous MDA and chromogenic reagent[J]. Journal of AnHui Agricultural Sciences, 2007,35(10):2829-2829.
[18]
赵炀,李永生,高秀峰.基于愈创木酚荧光减量准确测定过氧化物酶活性的新方法[J]. 分析化学, 2015,43(7):1040-1046. Zhao Y, Li Y S, Gao X F. A new method for accurate determination of peroxidase activity based on fluorescence decrease of guaiacol[J]. Chinese Journal of Analytical Chemistry, 2015,43(7):1040-1046.
[19]
Marklund S, Marklund G.Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase[J]. Journal of Cluster Science, 2010,47(3):469-474.
[20]
吴曦.硫在土壤中的形态及硫磺氧化[J]. 科学之友, 2009, 6(18):7-8. Wu Xi. Sulfur in soil shape and sulfur oxidation[J]. Friend of Science Amateurs, 2009,6(18):7-8.
[21]
沈兰,秦岭,张卫东,等.硫磺不同用量对土壤pH值、EC值及草莓长势的影响[J]. 农业工程技术, 2016,3(7):20-23. Shen L, Qin L, Zhang W D, et al. Effects of different sulphur dosage on soil pH value, EC value and Strawberry Growth[J]. Applied Engineering Technology, 2016,3(7):20-23.
[22]
崔岩山,王庆仁,董艺婷,等.硫磺对土壤中Pb和Zn形态的影响[J]. 环境化学, 2004,23(1):46-50. Cui Y S, Wang Q H, Dong Y T, et al. Effect of element sulfur on speciation of Pb and Zn of contaminated soil[J]. Environment Chemistry, 2004,23(1):46-50.
[23]
Starkey R L. Oxidation and reduction of sulfur compounds in soils[J]. Soil Science, 1996,101(4):297-306.
[24]
Israr D, Mustafa G, Khan K S. et al. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation[J]. Plant Physiology and Biochemistry, 2016,108(11):304-312.
[25]
Guarino C, Sciarrillo R.Effectiveness of in situ application of an Integrated Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils[J]. Ecological Engineering, 2017,99(2):70-82.
[26]
Jin C W, Li G X, Yu X H, et al. Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere[J]. Annals of Botany, 2010,105(5):835-841.
[27]
Nenwani V, Doshi P, Saha T, et al. Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity[J]. Journal of Biotechnology, 2010,136(2):713-721.
[28]
Ali A, Guo D, Mahar A, et al. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils[J]. Ecotoxicology and Environmental Safety, 2017,139(5):202-209.
[29]
Dary M, Chamber-Pérez M A, Palomares A J, et al. "In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria[J]. Journal of Hazardous Materials, 2010,177(1):323-330.
[30]
Jia Y, Tang S, Wang R, et al. Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Lolium perenne under Cd stress[J]. Journal of Hazardous Materials, 2010,180(3):384-394.
[31]
曹书苗,王文科,王非,等.放线菌Act12对Pb胁迫下黑麦草根系生长及抗性生理的影响[J]. 农业环境科学学报, 2016,35(10):1881-1887. Cao S M, Wang W K, Wang F, et al. Effects of actinomycetes Act12 on the root growth and resistant physiology of perennial ryegrass under Pb stress[J]. Journal of Agro-Environment Science, 2016, 35(10):1881-1887.
[32]
Ali A, Guo D, Mahar A, et al. Role of Streptomyces pactum in phytoremediation of trace elements by Brassica juncea in mine polluted soils[J]. Ecotoxicology and Environmental Safety, 2017, 144(9):387-395.
[33]
Babu A G, Kim J D, Oh B T. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1[J]. Journal of Hazardous Materials, 2013, 250(2):477-483.
[34]
湛润生,陈明昌,杨治平,等.硫磺对土壤Cd、Pb有效性的影响[J]. 水土保持学报, 2015,29(3):316-319. Kan R S, Chen M C, Yang Z P, et al. Effect of sulphur on availability of Cd and Pb in soil[J]. Journal of Soil and Water Conservation, 2015,29(3):316-319.
[35]
郭瞻宇,张子杨,蒋亚辉,等.不同品种芥菜对镉胁迫的敏感性分布及抗氧化特征[J]. 农业环境科学学报, 2018,37(12):2660-2668. Guo Z Y, Zhang Z Y, Jiang Y H, et al. Assessment of variation in sensitivity and antioxidant characteristics of different mustard cultivars under different Cd stress levels[J]. Journal of Agro-Environment Science, 2018,37(12):2660-2668.
[36]
邹素敏,杜瑞英,文典,等.不同品种蔬菜重金属污染评价和富集特征研究[J]. 生态环境学报, 2017,26(4):714-720. Zou S M, Du R Y, Wen D, et al. Enrichment characteristics analysis and assessment on heavy metal contamination of different vegetables[J]. Ecology and Environment Science, 2017,26(4):714-720.
[37]
Liu W, Zhou Q, An J, et al. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars[J]. Journal of Hazardous Materials, 2010,173(1):737-743.
[38]
纪宏伟,王小敏,庞宏伟,等.枯草芽孢杆菌与巨大芽孢杆菌对土壤有效态Cd的影响研究[J]. 水土保持学报, 2015,29(3):325-329. Ji H W, Wang X M, Pang H W, et al. Effect of Bacillus subtilis and Bacillus megaterium on Soil Available Cd[J]. Journal of Soil and Water Conservation, 2015,29(3):325-329.
[39]
尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J]. 中国农学通报, 2007,23(1):105-110. Yin Y Q, Hu J B, Deng M J. Latest development of antioxidant system and responses to stress in plant leaves[J]. Chinese Agriculture Scuence Bulletin, 2007,23(1):105-110.
[40]
Duman F, Kar M. Evaluation of effects of exposure conditions on the biological responses of Gammarus pulex exposed to cadmium[J]. International Journal of Environmental Science & Technology, 2015, 12(2):437-444.
[41]
Reddy M K, Alexander-Lindo R L, Nair M G. Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors[J]. Journal of Agricultural and Food Chemistry, 2005,53(23):9268-9273.
[42]
Verma S, Dubey R S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants[J]. Plant Science, 2003,164(4):645-655.
[43]
Muratova A, Lyubun Y, German K, et al. Effect of cadmium stress and inoculation with a heavy-metal-resistant bacterium on the growth and enzyme activity of Sorghum bicolor[J]. Environmental Science and Pollution Research, 2015,22(20):16098-16109.
[44]
李冬琴,陈桂葵,郑海,等.镉对两品种玉豆生长和抗氧化酶的影响[J]. 农业环境科学学报, 2015,34(2):221-226. Li D Q, Chen G K, Zheng H, et al. Effects of cadmium on growth and antioxidant enzyme activities of two kidney bean (Phaseolus vulgaris L.) cultivars[J]. Journal of Agro-Environment Scuence, 2015,34(2):221-226.