Slag and biochar application on community structure and methane emission of iron-reducing bacteria in paddy soil
WANG Xiao-tong1, XU Xu-ping1, WANG Wei-qi2,3
1. College of Life Science, Fujian Normal University, Fuzhou 350108, China;
2. Institute of Geography, Fujian Normal University, Fuzhou 350007, China;
3. Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
In order to explore the effects of slag and biochar application treatment on the community structure and methane emission of iron-reducing bacteria in paddy soil, applied three kinds of treatments, namely biochar, slag and biochar + slag, in a paddy field in Fuzhou to measure early and late paddy. The methane emission flux during the paddy growing season and the number of culturable iron-reducing bacteria were compared, and the difference between the composition of the iron-reducing bacteria and the community composition of the soil in the paddy field was compared. The application of waste could change the quantity of iron-reducing bacteria in paddy soil, and the number of iron-reducing bacteria in the late-season biochar application group was significantly higher than that in the other three groups (P<0.05); the waste was applied to a certain extent. Methane emissions from paddy soils were inhibited, and the early rice mixed application group had the most significant reduction in methane emissions. The iron-reducing bacteria in the paddy soil of Fuzhou Plain are rich in species, distributed in ten gates, of which Firmicutes and Proteobacteria are dominant bacteria, and the sum of abundance is greater than 95%. A total of 20genera were identified, among which the abundance of the genus Bacillus, Anaeromyxobacter, Clostridium and other ten genus, accounting for 62.07%~66.58% of the known iron-reducing genus in the sample; biochar and slag mainly by changing soil pH and water content, the community structure of iron-reducing bacteria in paddy soil was affected, and the effect of mixed application was more significant than single application. The number of Bacillus is significantly negatively correlated with the methane emission flux of paddy soil, and it is the main genus of iron reduction to inhibit methane production and emission.
王晓彤, 许旭萍, 王维奇. 炉渣与生物炭施加对稻田土壤铁还原菌群落结构及甲烷排放影响[J]. 中国环境科学, 2019, 39(6): 2495-2505.
WANG Xiao-tong, XU Xu-ping, WANG Wei-qi. Slag and biochar application on community structure and methane emission of iron-reducing bacteria in paddy soil. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(6): 2495-2505.
田婷,张青,蒋华伟,等.水稻植株对稻田甲烷排放影响的研究进展[J]. 江苏农业科学, 2017,45(20):28-31.Tian T, Zhang Q, Jiang H W, et al. Advances in research on effects of rice plants on methane emission from rice fields[J]. Jiangsu Agriculture Sciences, 2017,45(20):28-31.
[2]
唐海明,肖小平,汤文光,等.施肥模式对稻田土壤微生物影响的研究进展[J]. 湖南农业科学, 2017,23(8):119-122.Tang H M, Xiao X P, Tang W G, et al. Advances in the effects of fertilization practices on microorganism in the paddy soil[J]. Hunan Agriculture Sciences, 2017,23(8):119-122.
[3]
Zhang A F, Cui L Q, Pan G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China[J]. Agriculture, Ecosy Stems and Environment, 2010,139(4):469-475.
[4]
Smith P, Martino D, Cai Z, et al. Climate change 2007:Mitigation, contribution of working group Ⅲ to the fourth assessment report of the intergovernmental panel on climate change[C]//Cambridge, UK+ New York, NY:Cambridge University Press, 2007:497-540.
[5]
Qin X B, Li Y E, W ang H, et al. Long-term effect of biochar appli-cation on yield-scaled greenhouse gas emissions in a rice paddy cropping system:A four-year case study in south China[J]. The Science of the Total Environment, 2016,569:1390-1401.
[6]
杨士红,刘晓静,罗童元,等.生物炭施用对节水灌溉稻田温室气体排放影响研究进展[J]. 江苏农业科学, 2016,44(10):5-9.Yang S H, Liu X G, Luo T Y, et al. Advances in research on effects of biochar application on greenhouse gas emissions from water-saving irrigated rice fields[J]. Jiangsu Agriculture Sciences, 2016,44(10):5-9.
[7]
肖亚楠,杨士红,刘晓静,等.生物炭施用对节水灌溉稻田甲烷排放的影响[J]. 节水灌溉, 2017(10):52-55+60.Xiao Y N, Yang S H, Liu X T, t al. Effect of biochar application on CH4 emission from paddy field under water saving irrigation[J]. Water Saving Irrigation, 2017,(10):52-55+60.
[8]
祁乐,高明,郭晓敏,等.生物炭施用量对紫色水稻土温室气体排放的影响[J]. 环境科学, 2018,39(5):2351-2359.Qi L, Gao M, Guo X M, et al. Effects of biochar application rates on greenhouse gas emissions in the purple paddy soil[J]. Environmental Science, 2018,39(5):2351-2359.
[9]
蒋米亮,李鹏飞,王维奇.铁炉渣在稻田甲烷减排中的应用[J]. 实验室研究与探索, 2012,31(5):17-18+87.Jiang M L, Li P F, Wang W Q, Application of iron slag in methane mitigation in paddy fields[J]. Laboratory Research and Exploration, 2012,31(5):17-18+87.
[10]
王维奇,李鹏飞,曾从盛,等.铁炉渣施加对稻田甲烷产生、氧化与排放的影响[J]. 生态学报, 2013,33(5):1578-1583.Wang W Q, Li P F, Zeng C S, et al. Effect of iron slag adding on methane production,oxidation and emission in paddy fields.[J] Journal of Ecology, 2013,33(5):1578-1583.
[11]
Lovley D R, Holmes D E, Nevin K P. Dissimilatory Fe(Ⅲ) and Mn (IV) reduction[C]//Advances in Microbial Physiology, Amsterdam:Elsevier, 2004:219-286.
[12]
王媛媛.磷酸盐对水稻土中异化铁还原菌丰度和群落结构的影响[D]. 咸阳:西北农林科技大学, 2014.Wang Y Y. Effects of phosphate on abundance and community structure of dissimilatory iron reducing bacteria in paddy soil[D]. Xianyang:Northwest Agriculture and Forestry University, 2014.
[13]
黎慧娟,彭静静.异化Fe(Ⅲ)还原微生物研究进展[J]. 生态学报, 2012,32(5):1633-1642.Li H G, Peng J J. Recent advances in studies on dissimilatory Fe (Ⅲ)-reducing microorganisms[J]. Journal of Ecology, 2012,32(5):1633-1642.
[14]
Cheng W, Yagi K, Akiyama H, et al. An empirical model of soil chemical properties that regulate methane production in Japanese rice paddy soils[J]. Journal of Environmental Quality, 2007,36(6):1920.
[15]
Frenzel P, Bosse U, Janssen P H. Rice roots and methanogenesis in a paddy soil:ferric iron as an alternative electron acceptor in the rooted soil[J]. Soil Biology and Biochemistry, 1999,31(3):421-430.
[16]
王妙莹,许旭萍,王维奇,等.炉渣与生物炭施加对稻田温室气体排放及其相关微生物影响[J]. 环境科学学报, 2017,37(3):1046-1056.Wang M Y, Xu X P, Wang W Q, et al. Effects of slag and biochar application on greenhouse gas emissions from rice fields and related microbes[J]. Journal of Environmental Science, 2017,37(3):1046-1056.
[17]
陈世亮.福州南台岛地热前景浅析[J]. 福建地质, 2009,28(4):310-314.Chen S L. Analysis on the geothermal prospect of Nantai Island in Fuzhou[J]. Fujian Geology, 2009,28(4):310-314.
[18]
马永跃,仝川,王维奇,等.浮萍对福州平原稻田CH4和N2O排放的影响分析[J]. 中国生态农业学报, 2012,20(6):723-727.Ma Y Y, Tong C, Wang W Q, et al. Effect of azolla on CH4and N2O emissions in Fuzhou Plain paddy fields[J]. Chinese Journal of Eco-Agriculture, 2012,20(6):723-727.
[19]
Wang W, Sardans J, Lai DY, et al. Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China[J]. Field Crops Research, 2015,171:146-156.
[20]
朱秋丽,曾冬萍,王纯,等.废弃物施加对福州平原稻田土壤团聚体分布及其稳定性的影响[J]. 环境科学学报, 2016,36(8):3000-3008.Zhu Q L, Zeng D P, Wang C, et al. Effects of Waste Application on Distribution and Stability of Soil Aggregates in Paddy Fields in Fuzhou Plain[J]. Journal of Environmental Science, 2016,36(8):3000-3008.
[21]
王伟民,曲东,徐佳.水稻土中铁还原菌的分离纯化及铁还原能力分析[J]. 西北农林科技大学学报, 2008,11(10):103-109.Wang W M, Qu D, Xu J, Isolation of iron-reducing bacteria in paddy soil and its Fe(Ⅲ) reduction potential analysis[J]. Journal of Northwest Agriculture and Forestry University, 2008,11(10):103-109.
[22]
刘湛,拓晓骅,王保莉,等.厌氧富集培养对水稻土中铁还原菌种群结构的影响[J]. 西北农业学报, 2011,20(8):175-181.Liu Z, Tuo X Y, Wang B L, et al. Effects of anaerobic enrichment culture on population structure of iron-reducing bacteria in paddy soil[J]. Northwest Agricultural Journal, 2011,20(8):175-181.
[23]
关舒元,朱超,王保莉,等.铁还原菌株P4的碳源利用特征及其系统发育学分析[J]. 西北农林科技大学学报, 2008,36(3):117-123.Guan S Y, Zhu C L, Wang B, et al. Characterization of iron reduction using different carbon sources and phylogenetic analysis of Fe (Ⅲ)-reducing microorganism P4[J]. Journal of Northwest Agriculture and Forestry University, 2008,36(3):117-123.
[24]
鲁如坤.土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.Lu R K. Soil agricultural chemical analysis method[M]. Beijing:China Agricultural Science and Technology Press, 2000.
[25]
武晓飞,李大鹏,汪明,等.反复扰动下加藻对不同形态磷相互转化的影响[J]. 中国环境科学, 2015,35(4):1187-1196.Wu X F, Li D P, Wang M, et al. Migration and transformation of phosphorus forms under dual effect of sediment resuspension and the addition of algae[J]. China Environmental Science, 2015,35(4):1187-1196.
[26]
Topoliantz S, Ponge J F, Ballof S. Manioc peel and charcoal:a potential organic amendmenent for sustainable soil fertility in the tropics[J]. Biology and Fertility of Soils, 2005,41(l):15-21.
[27]
Lehmann J, Da Silva J P, Steiner C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin:fetilizer, manure and charcoal amendments[J]. Plant &Soil, 2003,249(2):343-357.
[28]
Ahn C, Peralta R M. Soil bacterial community structure and physicochemical properties in mitigation wetlands created in the Piedmont region of Virginia (USA)[J]. Ecological Engineering, 2009, 35(7):1036-1042.
[29]
Wang S, Fu B, Gao G, et al. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China[J]. Catena, 2013,101:122-128.
[30]
孙丽蓉,曲东,易维洁.多糖对水稻土中异化Fe(Ⅲ)还原过程的影响[J]. 河南农业科学, 2010,10(6):62-66.Sun L R, Qu D, Yi W J. Effect of Polysaccharide Concentration on Dissimilatory Fe (Ⅲ) Reduction in Paddy Soils[J]. Henan Agriculture Sciences, 2010,10(6):62-66.
[31]
牛世全,龙洋,李海云,等.应用IlluminaMiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J]. 微生物学通报, 2017, 44(9):2067-2078.Niu S Q, Long Y, Li H Y, et al. Microbial diversity in saline alkali soil from Hexi Corridor analyzed by IlluminaMiSeq high-throughput sequencing system[J]. Microbiology China, 2017,44(9):2067-2078.
[32]
吴超,曲东,刘浩.初始pH值对碱性和酸性水稻土微生物铁还原过程的影响[J]. 生态学报, 2014,34(4):933-942.Wu C, Qu D, Liu H. Effect of initial pH value on microbial Fe (Ⅲ) reduction in alkaline and acidic paddy soils[J]. Journal of Ecology, 2014,34(4):933-942.
[33]
Noll M, Matthies D, Frenzel P, et al. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient[J]. Environmental Microbiology, 2005,7(3):382-395.
[34]
Liu X Y, Lindemann W C, Whitford W G. Microbial diversity and activity of disturbed soil in the northem Chihuahuan desert[J]. Biology and Fertility of Soils, 2000,32(35):243-249.
[35]
程教擘,陈力力,李梦丹,等.不同耕作方式对稻田土壤微生物的影响[J]. 湖南农业科学, 2017,(8):8-10.Cheng J Q, Chen L L, Li M D, et al. Effects of different tillage methods on soil microbes in paddy fields[J]. Hunan Agriculture Sciences, 2017,(8):8-10.
[36]
严淑梅,黄建华,夏寅,等.秦陵地区土壤霉菌生长的含水率实验研究[J]. 秦始皇帝陵博物院, 2014,(1):367-373.Yan S M, Huang J H, Xia Y, et al. Experimental study on water content of soil mold growth in Qinling area[J]. Qin Shi Huang Mausoleum Museum, 2014(1):367-373.
[37]
全艳玲.地衣芽孢杆菌对有害微生物的拮抗作用[J]. 食品科学, 2002,(8):67-69.Quan Y L. Antagonism of harmful bacteria by Bacillus licheniformis[J]. Food Science, 2002,(8):67-69.
[38]
楚敏,张志东,王玮,等.生姜内生菌多样性及微生物拮抗作用的初步研究[J]. 新疆农业科学, 2011,48(11):2061-2066.Chu M, Zhang Z, Wang W, et al. Preliminary study on endophytic diversity and microbial antagonism of ginger[J]. Xinjiang Agricultural Science, 2011,48(11):2061-2066.
[39]
刘明,李忠佩,路磊,等.添加不同养分培养下水稻土微生物呼吸和群落功能多样性变化[J]. 中国农业科学, 2009,42(3):1108-1115.Liu M, Li Z P, Lu L, et al. Changes of microbial respiration and community function diversity of paddy soils under different nutrient cultures[J]. Chinese Agricultural Science, 2009,42(3):1108-1115.
[40]
Jäckel U, Schnell S. Suppression of methane emission from rice paddies by ferric iron fertilization[J]. Soil Biology and Biochemistry, 2000,32(11/12):1811-1814.
[41]
Qu D, Ratering S, Schnell S. Microbial reduction of weakly crystalline iron(Ⅲ) oxides and suppression of methanogenesis in paddy soil[J]. Bulletin of Environmental Contamination and Toxicology, 2004,72(6):1172-1181.
[42]
Thomsen U, Thamdrup B, Stahl D A, et al. Pathways of organic carbon oxidation in a deep lacustrine sediment, Lake Michigan[J]. Limnology and Oceanography, 2004,49(6):2046-2057.
[43]
Jensen M M, Thamdrup B, Rysgaard S, et al. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition[J]. Biogeochemistry, 2003,65(3):295-317.