Nitrogen removal characteristics of a highly adaptable Nitrosomonas eutropha CZ-4
XIONG Ying1, XIANG Si1,2, CHENG Kai1
1. Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization for College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China; 2. Wuhan Micro-Glory Environmental Technology Innovation Co. Ltd, Wuhan 430068, China
Abstract:A Nitrosomonas strain was isolated from the landfill leachate. It was named as Nitrosomonas eutropha CZ-4 for its 16s rDNA sequence was highly similar to N. eutropha C91at an identity of 99%. This work studied the influences of pH, temperature, free nitrous acid concentration and salinity on the growth of N. eutropha CZ-4, as well as its NH3-N removal abilities in landfill leachate, black odor water and eutrophic lake water. The results showed that the optimum growth pH of the strain was 7.3~8.7, the optimum growth temperature was 30.9℃, and the IC50 of free nitrous acid and salinity was about 0.11mg/L and 2% (in terms of NaCl), respectively. Under the optimal fermentation condition, the maximum NH3-N removal rate reached 58mg/(L·h), and the shortest doubling time was 8.2h. In different types of sewage/surface water (their initial ammonia concentration ranged from 0.66mg/L to 603mg/L), the NH3-N removal rate was up to 11.4mg/(L·h), the doubling time was as short as 10.9h, and the residual NH3-N concentration was down to 0.11mg/L.
Eighmy T T, Bishop P L. Distribution and role of bacterial nitrifying populations in nitrogen removal in aquatic treatment systems[J]. Water Research, 1989,23(8):947-955.
[2]
Guo J, Peng Y, Wang S, et al. Pathways and organisms involved in ammonia oxidation and nitrous oxide emission[J]. Critical Reviews in Environmental Science and Technology, 2013,43(21):2213-2296.
[3]
Koops H P, Purkhold U, Pommerening-Röser A, et al. The lithoautotrophic ammonia-oxidizing bacteria[J]. Prokaryotes, 2006, 5:778-811.
[4]
Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria:a model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001,55:485-529.
[5]
Koops H P, Andreas P R. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species[J]. FEMS Microbiology Ecology, 2001,37(1):1-9.
[6]
Watson S W, Mandel M. Comparison of the morphology and deoxyribonucleic acid composition of 27strains of nitrifying bacteria1[J]. Journal of Bacteriology, 1971,107(2):563-569.
[7]
Koops H P, Harms H. Deoxyribonucleic acid homologies among 96strains of ammonia-oxidizing bacteria[J]. Archives of Microbiology, 1985,141(3):214-218.
[8]
Papp B, Torok T, Sandor E,et al. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea [J]. Folia Microbiologica (Praha), 2016,61(3):191-198.
[9]
Fiencke C, Spieck E, Bock E. Nitrifying bacteria[M]. Springer Netherlands, 2005:255-276.
[10]
张宇坤,王淑莹,董怡君,等.游离氨和游离亚硝酸对亚硝态氮氧化菌活性的影响[J]. 中国环境科学, 2014,34(5):1242-1247. Zhang Y K, Wang S Y, Dong Y J,et al. Effect of FA and FNA on activity of nitrite-oxidizing bacteria[J]. China Environmental Science, 2014,34(5):1242-1247.
[11]
Groeneweg J, Sellner B, Tappe W. Ammonia oxidation in nitrosomonas at NH3 concentrations near Km:Effects of pH and temperature[J]. Water Research, 1994,28(12):2561-2566.
[12]
Claros J, Jimenez E, Aguado D,et al. Effect of pH and HNO2 concentration on the activity of ammonia-oxidizing bacteria in a partial nitritation reactor[J]. Water Science & Technology, 2013, 67(11):2587-2594.
[13]
张宇坤,王淑莹,董怡君,等.NaCl盐度对氨氧化细菌活性的影响及动力学特性[J]. 中国环境科学, 2015,35(2):465-470. Zhang Y K, Wang S Y, Dong Y J, et al. Effect of NaCl salinity on activity of ammonia-oxidizing bacteria and kinetic characterization[J]. China Environmental Science, 2015,35(2):465-470.
[14]
Suwa Y, Imamura Y, Suzuki T, et al. Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges[J]. Water Research, 1994,28(7):1523-1532.
[15]
Bollmann A, Laanbroek H J. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations[J]. FEMS Microbiology Ecology, 2001,37(3):211-221.
[16]
Verhagen F J, Laanbroek H J. Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats[J]. Applied and Environmental Microbiology, 1991,57(11):3255-3263.
[17]
Verhagen F J M, Hageman P E J, Woldendorp J W,et al. Competition for ammonium between nitrifying bacteria and plant roots in soil in pots:effects of grazing by flagellates and fertilization[J]. Soil Biology and Biochemistry, 1994,26(1):89-96.
[18]
Oshiki M, Takagi R, Hatamoto M,et al. High-cell-density cultivation of Nitrosomonas europaea in a membrane bioreactor for performing protein purification and characterization studies[J]. The Journal of General and Applied Microbiology, 2017,62(6):330-333.
[19]
Bollmann A, French E, Laanbroek H J. Isolation, cultivation, and characterization of ammonia-oxidizing bacteria and archaea adapted to low ammonium concentrations[J]. Methods in Enzymology, 2011,486:55-88.
[20]
范秀容,李广武,沈萍.微生物学实验[M]. 2版.北京:高等教育出版社, 1989:51-53. Fan X R, Li G W, Shen P. Microbiology experiment[M]. 2nd Ed. Beijing:Higher Education Press, 1989:51-53.
[21]
Weisburg W G, Barns S M, Pelletier D A, et al. 16S ribosomal DNA amplification for phylogenetic study.[J]. Journal of Bacteriology, 1991,173(2):697-703.
[22]
国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002:271-281. State Environmental Protection Administration. Water and wastewater monitoring and analysis method[M]. 4th Ed. Beijing:China Environmental Science Press, 2002:271-281.
[23]
Belser L W, Schmidt E L. Growth and oxidation kinetics of three genera of ammonia oxidizing nitrifiers[J]. FEMS Microbiology Letters, 2010,7(3):213-216.
[24]
Anthonisen A C, Loehr R C, Prakasam T B et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Water Pollution Control Federation, 1976,48(5):835-852.
[25]
Xiong Y, Cheng K. Nitrosomonas eutropha strainCZ-416S ribosomal RNA gene, partial sequence, GenBank:MH999419.1[EB/OL]. https://www.ncbi.nlm.nih.gov/nuccore/MH999419.1/,2019-4-10/2019-4-13.
[26]
Schmidt I, Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha [J]. Archives of Microbiology, 1997,167(2/3):106-111.
[27]
Jiménez E, Giménez J B, Seco A, et al. Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate[J]. Bioresource Technology, 2012,124(11):478-484.
[28]
Paul S, Bag S K, Das S, et al. Molecular signature of hypersaline adaptation:insights from genome and proteome composition of halophilic prokaryotes[J]. Genome biology, 2008,9(4):R70.
[29]
Soppa J. From genomes to function:haloarchaea as model organisms[J]. Microbiology, 2006,152(3):585-590.
[30]
Koops H P, Bottcher B, Moller,et al. Classification of eight new species of ammonia-oxidizing bacteria:Nitrosomonas communis sp.nov., Nitrosomonas ureae sp.nov., Nitrosomonas aestuarii sp.nov., Nitrosomonas marina sp.nov., Nitrosomonas nitrosa sp.nov., Nitrosomonas eutropha sp.nov., Nitrosomonas oligotropha sp.nov.and Nitrosomonas halophila sp.nov.[J].Journal of General Microbiology, 1991,137:1689-1699.
[31]
Cua L S, Stein L Y. Effects of nitrite on ammonia-oxidizing activity and gene regulation in three ammonia-oxidizing bacteria[J]. FEMS Microbiology Letters, 2011,319(2):169-175.
[32]
Stein L Y, Arp D J. Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite[J]. Applied and Environmental Microbiology, 1998,64(10):4098-4102.
[33]
Thandar S M, Ushiki N, Fujitani H, et al. Ecophysiology and comparative genomics of Nitrosomonas mobilis Ms1isolated from autotrophic nitrifying granules of wastewater treatment bioreactor[J]. Frontiers in Microbiology, 2016,7:1869.
[34]
Itoh Y, Sakagami K, Uchino Y, et al. Isolation and characterization of a thermotolerant ammonia-oxidizing bacterium Nitrosomonas sp. JPCCT2from a thermal power station[J]. Microbes and Environments, 2013,28(4):432-435.
[35]
Limpiyakorn T, Kurisu F, Sakamoto Y, et al. Effects of ammonium and nitrite on communities and populations of ammonia-oxidizing bacteria in laboratory-scale continuous-flow reactors[J]. FEMS microbiology ecology, 2007,60(3):501-512.
[36]
Yuichi S, Norton J M, Bollmann A, et al. Genome sequence of Nitrosomonas sp.strain AL212, an ammonia-oxidizing bacterium sensitive to high levels of ammonia[J]. Journal of Bacteriology, 2011,193(18):5047-5048.
[37]
Nakagawa T, Takahashi R. Nitrosomonas stercoris sp.nov., a chemoautotrophic ammonia-oxidizing bacterium tolerant of high ammonium isolated from composted cattle manure[J]. Microbes and Environments, 2015,30(3):221-227.
[38]
Park S, Bae W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry, 2009,44(6):631-640.
[39]
Tan N C G, Kampschreur M J, Wanders W, et al. Physiological and phylogenetic study of an ammonium-oxidizing culture at high nitrite concentrations[J]. Systematic and Applied Microbiology, 2008,31(2):114-125.
[40]
Loosdrecht M C M. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001,44(1):153-160.
[41]
Chen M, Chen Y, Dong S, et al. Mixed nitrifying bacteria culture under different temperature dropping strategies:Nitrification performance, activity, and community[J]. Chemosphere, 2018,195:800-809.
[42]
Lee S, Cho K, Lim J, et al. Acclimation and activity of ammonia-oxidizing bacteria with respect to variations in zinc concentration, temperature, and microbial population[J]. Bioresource Technology, 2011,102(5):4196-4203.
[43]
Zeng J, Zhao D, Yu Z, et al. Temperature responses of ammonia-oxidizing prokaryotes in freshwater sediment microcosms[J]. PLOS ONE, 2014,9(6):1-8.
[44]
孙洪伟,于雪,高宇学,等.游离氨对氨氧化菌(AOB)活性抑制动力学试验[J]. 环境科学, 2018,39(9):4294-4301. Sun H W, Yu X, Gao Y X, et al. Inhibitory kinetics of free ammonia (FA) on ammonia-oxidizing bacteria (AOB)[J]. Environmental Science, 2018,39(9):4294-4301.
[45]
Fumasoli A, Morgenroth E, Udert K M. Modeling the low pH limit of Nitrosomonas eutropha in high-strength nitrogen wastewaters[J]. Water Research, 2015,83:161-170.
[46]
Serralta S, Joaquín, Gatti., et al. Enrichment of AOB and NOB population by applying a BABE Reactor in an activated sludge pilot plant[J]. Water Environment Research, 2015,87(4):369-377.
[47]
楚江,王一农,章文军,等.亚硝化单胞菌(Nitrosomonas sp.)THD-1分离鉴定及高密度培养[J]. 生物学杂志, 2012,29(5):81-84. Chu J, Wang Y N, Zhang W J, et al. Isolating and high-density culturing of Nitrosomonas sp.THD-1[J]. Journal of Biology, 2012, 29(5):81-84.
[48]
Stein L Y, Arp D J, Berube P M, et al. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91:Implications for niche adaptation[J]. Environmental Microbiology, 2008,9(12):2993-3007.
[49]
Hommes N G. Mutagenesis and expression of amo, which codes for ammonia monooxygenase in Nirtosomonas europaea [J]. Journal of Bacteriology, 1998,180(13):3353-3359.
[50]
Bock E, Wagner M. Oxidation of inorganic nitrogen compounds as an energy source[J]. Prokaryotes, 2013,64:83-118.
[51]
Keen G A, Prosser J I. Steady state and transient growth of autotrophic nitrifying bacteria[J]. Archives of Microbiology, 1987,147(1):73-79.
[52]
Skinner F A, Walker N. Growth of Nitrosomonas europaea in batch and continuous culture[J]. Archives of Microbiology, 1961,38(4):339-349.
[53]
Cruvellier N, Poughon L, Creuly C,et al. Growth modelling of Nitrosomonas europaea ATCC(R) 19718 and Nitrobacter winogradskyi ATCC(R) 25391:A new online indicator of the partial nitrification[J].Bioresource Technology, 2016,220:369-377.
[54]
杨浩锋,谢柳,周俊利,等.一株氨氧化细菌的分离鉴定及其氨氧化特性[J]. 基因组学与应用生物学, 2013,32(4):453-458. Yang H F, Xie L, Zhou J L, et al. Isolation, identification and characteristics of an ammonia oxidizing bacterium[J]. Genomics and Applied Biology, 2013,32(4):453-458.