Enhanced degradation of carbon tetrachloride with iron-based bimetallic particles in groundwater
ZHU Xue-qiang1, HAN Bao-ping2
1. School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; 2. School of Geography & amp;Geomatics and Urban-rural Planning, Jiangsu Normal University, Xuzhou 221116, China
Abstract:Micro-scale bimetallic Ni-Fe, Cu-Fe, Ag-Fe particles were synthesized by displacement plating. The structures were characterized with scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM/XPS results showed Ni, Cu, Ag were non-uniformly deposited on the iron matrix, and the surface of the bimetallic particles were oxidized. The variation of CCl4 degradation rate was rather sensitive with the loading ratio of catalytic metal. The suitable loading ratios of Ni, Cu and Ag in Ni-Fe, Cu-Fe and Ag-Fe bimetal were 1.0wt%, 0.8wt% and 0.4wt% respectively. The CCl4 degradation pathways in the bimetallic system mainly included direct reduction on zero-valent iron surface and catalytic hydrogenation reduction on catalytic metal surface. Fe-Ag achieved the highest CCl4 degradation efficiency among the tested bimetals, followed by Cu-Fe and Ni-Fe.
Tratnyek P G, Johnson R L. Nanotechnologies for environmental cleanup[J]. Nano Today, 2006,1(2):44-48.
[2]
Brown R A. Chemical oxidation and reduction for chlorinated solvent remediation[A]. In situ remediation of chlorinated solvent plumes[C]. Springer New York, 2010:481-535.
[3]
刘秋龙,杨昱,夏甫,等.地下水中阴离子对球磨零价铁除砷影响[J]. 中国环境科学, 2019,39(5):2028-2033. Liu Q L, Yang Y, Xia F, et al. Impact of groundwater anions on the arsenic remove by ball milling zero valent iron[J]. China Environmental Science, 2019,39(5):2028-2033.
[4]
张瑾,魏才倢,白鸽,等.多聚物吸附纳米零价铁在多孔介质中的迁移[J]. 中国环境科学, 2018,38(10):149-156. Zhang J, Wei C J, Bai G, et al. Transport of PAA modified nanoscale zero-valent iron in water saturated porous media[J]. China Environmental Science, 2018,38(10):3747-3754.
[5]
林英杰,张硕,孙力平,等. VB12协同Fe/Cu双金属去除二氯甲烷过程调控与机理[J]. 中国环境科学, 2016,36(9):2650-2657. Lin Y J, Zhang S, Sun L P. Synergistic effect of vitamin B12and Fe/Cu bimetal on reduction of dichloromethane:Mechanism study and process control[J]. China Environmental Science, 2016,36(9):2650-2657.
[6]
Wu H, Feng Q. Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride[J]. Journal of Environmental Sciences, 2017,54:346-357.
[7]
Xie Y, Cwiertny D M. Chlorinated solvent transformation by palladized zerovalent iron:Mechanistic insights from reductant loading studies and solvent kinetic isotope effects[J]. Environmental Science & Technology, 2013,47(14):7940-7948.
[8]
O'Carroll D, Sleep B, Krol M, et al. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation[J]. Advances in Water Resources, 2013,51:104-122.
[9]
Cwiertny D M, Bransfield S J, Livi K J, et al. Exploring the influence of granular iron additives on 1,1,1-Trichloroethane Reduction[J]. Environmental Science & Technology, 2006,21(40):6837-6843.
[10]
Lai B, Zhang Y, Chen Z, et al. Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles[J]. Applied Catalysis B:Environmental, 2014,144:816-830.
[11]
高珊珊,李杰,任明忠,等.超声辅助海绵铁/银双金属降解四溴双酚A及生物毒性初步评价[J]. 兰州交通大学学报, 2013,32(3):122-127. Gao S S, Li J, Ren M Z, et al. Degradation of tetrabromobisphenol A by granular sponge iron/silver bimetallic particles under the ultrasound irradiation and assessment of its bio-toxicity[J]. Journal of Lanzhou Jiaotong University, 2013,32(3):122-127.
[12]
Li X, Zhang W. Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. The Journal of Physical Chemistry C, 2007,111(19):6939-6946.
[13]
Prieto P, Nistor V, Nouneh K, et al. XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth[J]. Applied Surface Science, 2012,258(22):8807-8813.
[14]
Li X, Zhang W. Iron nanoparticles:the core-shell structure and unique properties for Ni (Ⅱ) sequestration[J]. Langmuir, 2006,22(10):4638-4642.
[15]
Bae S, Lee W. Influence of riboflavin on nanoscale zero-valent iron reactivity during the degradation of carbon tetrachloride[J]. Environmental Science & Technology, 2014,48(4):2368-2376.
[16]
Gotpagar J, Grulke E, Tsang T, et al. Reductive dehalogenation of trichloroethylene using zero-valent iron[J]. Environmental Progress, 1997,16(2):137-143.
[17]
Lien H L, Zhang W X. Nanoscale Pd/Fe bimetallic particles:catalytic effects of palladium on hydrodechlorination[J]. Applied Catalysis B:Environmental, 2007,77(1):110-116.
[18]
Kim H, Hong H J, Lee Y J, et al. Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane[J]. Desalination, 2008,223(1):212-220.
[19]
Clark C J, Rao P S C, Annable M D. Degradation of perchloroethylene in cosolvent solutions by zero-valent iron[J]. Journal of Hazardous Materials, 2003,B96:65-78.
[20]
Shrimali M, Singh K P. New methods of nitrate removal from water[J]. Environmental Pollution, 2001,112(3):351-359.
[21]
Schrick B, Blough J L, Jones A D, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles[J]. Chemistry of Materials, 2002,14:5140-5147.
[22]
Noubactep C, Schöner A. Fe0-based alloys for environmental remediation:Thinking outside the box[J]. Journal of Hazardous Materials, 2009,165(1):1210-1214.
[23]
Luo S, Yang S, Wang X, et al. Reductive degradation of tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation[J]. Chemosphere, 2010,79(6):672-678.
[24]
O'Loughlin E J, Kemner K M, Burris D R. Effects of AgI, AuⅢ, and CuⅡ on the reductive dechlorination of carbon tetrachloride by green rust[J]. Environmental Science & Technology, 2003,37(13):2905-2912.
[25]
吴德礼,王红武,樊金红,等.Fe0催化还原转化水中CCl4的实验研究[J]. 环境科学, 2009,29(12):3433-3438. Wu D L, Wang H W, Fang J H, et al. Catalytic Reduction of CCl4 in Water by Fe0 and Amended Fe0[J]. Environmental Science, 2008, 29(12):3433-3438.
[26]
Gavaskar A R. Design and construction techniques for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999,68(1):41-71.
[27]
Liu W J, Qian T T, Jiang H. Bimetallic Fe nanoparticles:Recent advances in synthesis and application in catalytic elimination of environmental pollutants[J]. Chemical Engineering Journal, 2014, 236:448-463.
[28]
王健,王绍青.铝合金表面电偶腐蚀与电子功函数的关系[J]. 物理化学学报, 2014,30(3):551-558. Wang J, Wang S Q. Correlation between galvanic corrosion and electronic work function of Al alloy surface[J]. Acta Physico-Chimica Sinica, 2014,30(3):551-558.
[29]
Brezonik P L, Arnold W A. Water Chemistry[M]. New York:Oxford University Press, 2011:414.