A "core-shell" structure of magnetic adsorbent MZF@SiO2 (MZFS) was prepared by in-situ hydrolysis of tetraethylorthosilicate in this paper. And its structural properties were characterized via X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FT-IR). The azo dyes of neutral red (NR) adsorption property on MZFS were further studied. It was showed that the adsorption kinetic performance could be described adopting pseudo-second-order model and the Freundlich model. Chemical adsorption was the rate control step based on the results. The adsorption free energy E, △G and △H were 0.472-0.773kJ/mol, -20~0kJ/mol, and 37.5kJ/mol respectively, indicating a physical adsorption dominated spontaneous and endothermic process. The intermolecular hydrogen bonding was deduced as the main adsorption force from the FT-IR results. MZFS could be in situ regenerated using 15%wt H2O2. These results provided basic theoretical data for the development of treatment to azo dye wastewater.
曾红杰, 余静, 王盈盈. 磁性吸附剂MZFS吸附偶氮染料中性红的性能及机理[J]. 中国环境科学, 2019, 39(9): 3814-3823.
ZENG Hong-jie, YU Jing, WANG Ying-ying. The performance and mechanism of adsorption azo dye neural red from aqueous solution using magnetic adsorbent MZFS. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(9): 3814-3823.
Hua Y, Xiao J, Zhang Q, et al. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes[J]. Nanoscale Research Letters, 2018, 13(1):99.
[2]
Fu Y, Viraraghavan T. Fungal decolorization of dye wastewaters:a review[J]. Bioresour Technol, 2001,79(3):251-262.
[3]
Gyöngyi V, Apostolov S, Borko M, et al. Multivariate assessment of azo dyes' biological activity parameters[J]. Journal of Chromatography B, 2018,1084:141-149.
[4]
Himanshu P. Charcoal as an adsorbent for textile wastewater treatment[J]. Separation Science and Technology, 2018,53(17):2797-2812.
[5]
安连财,韩久放,章应辉,等.多孔有机聚合物吸附分离水体系中有机污染物研究和应用进展[J]. 应用化学, 2018,35(9):1019-1025. An L C, Han J F, Zhang Y H, et al. Research and application progress on porous organic polymers for adsorption and separation of organic pollutants in water system[J]. Chinese Journal of Applied Chemistry, 2018,35(9):1019-1025.
[6]
Liu R, Liu H, Zhao X, et al. Treatment of dye wastewater with permanganate oxidation and in situ formed manganese dioxides adsorption:Cation blue as model pollutant[J]. Journal of Hazardous Materials, 2010,176(1-3):926-931.
[7]
Chen X M, Ma J F, Li D L. Treatment of dye wastewater by adsorption with bentonite-supported magnetic materials[J]. Environmental Science & Technology, 2011,340(6):487-491.
[8]
郝思宇,张艾,刘亚男.臭氧与过氧化钙协同降解甲基红废水[J]. 中国环境科学, 2019,39(2):145-151. Hao S Y, Zhang A, Liu Y N. Ozone and calcium peroxide synergistically degrade methyl red wastewater[J]. China Environmental Science, 2019, 39(2):145-151.
[9]
唐海,张昊楠,段升飞,等.SO32-活化S2O82-降解偶氮染料废水的机制研究[J]. 中国环境科学, 2018,38(3):959-967. Tang H, Zhang H N Duan S F, et al. Mechanism research for degradation of azo dying wastewater based on persulfate activated by sulphite[J]. China Environmental Science, 2018,38(3):959-967.
[10]
Wang S, Ding L L, Sun C, et al. Highly efficient photocatalytic treatment of dye wastewater via visible-light-driven AgBr-Ag3PO4/MWCNTs[J]. Journal of Molecular Catalysis A Chemical, 2014,383-384:128-136.
[11]
Yan F C, Wang X. Treatment of dye wastewater using hydrothermally prepared nano-TiO2, under natural light[J]. Journal of Inorganic & Organometallic Polymers & Materials, 2016,26(1):142-146.
[12]
Hussein A, Scholz M. Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands[J]. Environmental Science & Pollution Research, 2018,25(7):6870-6889.
[13]
Tan L, Ning S. Research progress in the combined treatment of dye wastewater with fungi and bacteria[J]. Industrial Water Treatment, 2013,33(6):6-9.
[14]
Ai N S, Hameed B H. Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process[J]. Desalination, 2011,269(1-3):1-16.
[15]
Li Y, Chen J, Liu J, et al. Activated carbon supported TiO2-photocatalysis doped with Fe ions for continuous treatment of dye wastewater in a dynamic reactor[J]. J Environ Sci, 2010,22(8):1290-1296.
[16]
Jian M A, Yu L I, Zhang W Y, et al. Treatment of Dye Wastewater by Adsorption and Catalytic Oxidation with Modified Bentonite[J]. Environmental Science & Technology, 2010,33(6):169-172.
[17]
Gopinathan R, Bhowal A, Garlapati C. Thermodynamic study of some basic dyes adsorption from aqueous solutions on activated carbon and new correlations[J]. Journal of Chemical Thermodynamics, 2017,107:182-188.
[18]
Albadarin A B, Collins M N, Mu N, et al. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue[J]. Chemical Engineering Journal, 2017,307:264-272.
[19]
Zhao Y, Zhang Y, Liu A, et al. Construction of Three-Dimensional Hemin-Functionalized Graphene Hydrogel with High Mechanical Stability and Adsorption Capacity for Enhancing Photodegradation of Methylene Blue[J]. ACS Applied Materials & Interfaces, 2017,9(4):4006-4014.
[20]
Shen K, Gondal M A. Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground[J]. Journal of Saudi Chemical Society, 2017,21(S1):S120-S127.
[21]
Pathania D, Sharma S, Singh P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica, bast[J]. Arabian Journal of Chemistry, 2017,10(S1):S1445-S1451.
[22]
陈炜,张宇东,蔡珺晨,等.壳聚糖负载磺化酞菁钴催化过硫酸盐降解甲基橙的研究[J]. 中国环境科学, 2019,39(1):157-163. Chen W, Zhang Y D, Cai J C, et al. Degradation of methyl orange by chitosan microsphere supported cobalt tetrasulfophthalocyanine activated persulfate[J]. China Environmental Science, 2019,39(1):157-163.
[23]
Ngulube T, Gumbo J R, Masindi V, et al. An update on synthetic dyes adsorption onto clay based minerals:A state-of-art review[J]. Journal of Environmental Management, 2017,191:35-57.
[24]
Stawiński W, W?grzyn A, Dańko T, et al. Acid-base treated vermiculite as high performance adsorbent:Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies[J]. Chemosphere, 2017,173:107-115.
[25]
Adeyemo A A, Adeoye I O, Bello O S. Adsorption of dyes using different types of clay:a review[J]. Applied Water Science, 2017, 7(2):543-568.
[26]
Venkatesha T G, Viswanatha R, Nayaka Y A, et al. Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles[J]. Chemical Engineering Journal, 2012,198-199(none):1-10.
[27]
Asfaram A, Ghaedi M, Hajati S, et al. Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded activated carbon[J]. Ultrasonics-Sonochemistry, 2017,34:1-12.
[28]
Lei C, Pi M, Jiang C, et al. Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red[J]. Journal of Colloid and Interface Science, 2016,490:242-251.
[29]
Asfaram A, Ghaedi M, Hajati S, et al. Synthesis of magnetic γ-Fe2O3-based nanomaterial for ultrasonic assisted dyes adsorption:Modeling and optimization[J]. Ultrasonics Sonochemistry, 2016,32:418-431.
[30]
Wen T, Wang J, Yu S, et al. Magnetic Porous Carbonaceous Material Produced from Tea Waste for Efficient Removal of As(V), Cr(VI), Humic Acid, and Dyes[J]. Acs Sustainable Chemistry & Engineering, 2017,5(5):4371-4380.
[31]
Debnath A, Majumder M, Pal M, et al. Enhanced Adsorption of Hexavalent Chromium onto Magnetic Calcium Ferrite Nanoparticles:Kinetic, Isotherm, and Neural Network Modeling[J]. Journal of Dispersion Science & Technology, 2016,186(12):7-13.
[32]
Rashid S, Shen C, Yang J, et al. Preparation and properties of chitosan-metal complex:Some factors influencing the adsorption capacity for dyes in aqueous solution[J]. Journal of Environmental Sciences, 2018,66(4):301-309.
[33]
Saber-Samandari S, Saber-Samandari S, Joneidi-Yekta H, et al. Adsorption of anionic and cationic dyes from aqueous solution using gelatin-based magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube[J]. Chemical Engineering Journal, 2017,308:1133-1144.
[34]
董正玉,吴丽颖,王霁,等.新型Fe3O4@α-MnO2活化过一硫酸盐降解水中偶氮染料[J]. 中国环境科学, 2018,(8):3003-3010. Dong Z Y, Wu L Y, Wang Q, et al. Novel Fe3O4@α-MnO2activated peroxymonosulfate degradation of azo dyes in aqueous solution[J]. China Environmental Science, 2018,(8):3003-3010.
[35]
Wen S. Adsorption-desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater[J]. Bioresource Technology, 2016,210(1):123-130.
[36]
Bokare A D, Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014,275:121-135.
[37]
Wang W, Liu Y, Li T, et al. Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles[J]. Chemical Engineering Journal, 2014,242:1-9.
[38]
Chang Y C, Chen D H. Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent[J]. Macromolecular Bioscience, 2005,5(3):254-261.
[39]
Xu Z, Li W, Xiong Z, et al. Removal of anionic dyes from aqueous solution by adsorption onto amino-functionalized magnetic nanoadsorbent[J]. Desalination & Water Treatment, 2016,57(15):1-12.
[40]
张晓蕾,陈静,韩京龙,等.壳-核结构Fe3O4/MnO2磁性吸附剂的制备、表征及铅吸附去除研究[J]. 环境科学学报, 2013,33(10):2730-2736. Zhang X L, Chen J, Han J L, et al. Preparation and evaluation of shell-core structured Fe3O4/MnO2 magnetic adsorbent for Pb(Ⅱ) removal from aqueous solutions[J]. Acta Scientiae Circumstantiae, 2013,33(10):2730-2736.
[41]
Zhang Y, Xu Q, Zhang S, et al. Preparation of thiol-modified Fe3O4@SiO2, nanoparticles and their application for gold recovery from dilute solution[J]. Separation & Purification Technology, 2013, 116(37):391-397.
[42]
郝旗,余静,袁率,等.废无汞碱性电池极性材料制备锰锌铁氧体磁性纳米颗粒[J]. 化工环保, 2017,37(3):340-345. Hao Q, Yu J, Yuan S, et al. Preparation of manganese-zinc ferrite magnetic nano-particles using spent polar material in mercury-free alkaline battery[J]. Environmental Protection of Chemical Industry, 2017,37(3):340-345.
[43]
Gawas U B, Mojumdar S C, Verenkar V M S. Synthesis, characterization, infrared studies, and thermal analysis of Mn0.6Zn0.4Fe2 (C4H2O4)3·6N2H4, and its decomposition product Mn0.6Zn0.4Fe2O4[J]. Journal of Thermal Analysis & Calorimetry, 2010,100(3):867-871.
[44]
刘泽玲.磁性氧化石墨烯复合材料的制备及其吸附染料的性能研究[D]. 天津工业大学, 2017. Liu Z L. Preparation of magnetic graphene oxide composites and their dye adsorption properties[D]. Tianjin Polytechnic University, 2017.
[45]
Ranjithkumar V, Sangeetha S, Vairam S. Synthesis of magnetic activated carbon/α-Fe2O3, nanocomposite and its application in the removal of acid yellow 17dye from water[J]. Journal of Hazardous Materials, 2014,273:127-135.
[46]
Ni Z M, Xia S J, Wang L G, et al. Treatment of methyl orange by calcined layered double hydroxides in aqueous solution:Adsorption property and kinetic studies[J]. Journal of Colloid & Interface Science, 2007,316(2):284-291.
[47]
Ho Y S, Mckay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999,34(5):451-465.
[48]
姚超,刘敏,李为民,等.凹凸棒石/氧化锌纳米复合材料对亚甲基蓝的吸附性能[J]. 环境科学学报, 2010,30(6):1211-1219. Yao C, Liu M, Li W M, et al. Adsorption capability of methylene blue by attapulgite/zinc oxide nanocomposites[J]. Acta Scientiae Circumstantiae, 2010,30(6):1211-1219.
[49]
余静,王芮,郝旗,等.磁性MZF@SiO2对水中Pb(Ⅱ)的吸附[J]. 环境科学学报, 2018,38(8):3099-3107. Yu J, Wang R, Hao Q, et al. Adsorption of Pb(Ⅱ) from aqueous solution by magnetic MZF@SiO2[J]. Acta Scientiae Circumstantiae, 2018,38(8):3099-3107.
[50]
杨晓霞,郑小峰,郭延红.枣核活性炭对罗丹明B吸附性能的研究[J]. 离子交换与吸附, 2016,32(4):341-350. Yang X X, Zhen X F, Guo Y H. Study on adsorption properties of rhodamine B by zona jujube activated carbon[J]. Ion Exchange and Adsorption, 2016,32(4):341-350.
[51]
Bhattacharjee J, Shil A, Hussain S A, et al. Adsorption of a cationic water-soluble dye onto cationic Langmuir-Blodgett films via nano clay platelets:An efficient approach to control the H-dimer[J]. Molecular Crystals & Liquid Crystals, 2016,624(1):213-223.
[52]
邓述波,余刚.环境吸附材料及应用原理[M]. 北京:科学出版社, 2012. Deng S B, Yu G. Environmental adsorption materials and application principles[M]. Beijing:Science Press, 2012.
[53]
Hsieh C T, Teng H. Langmuir and Dubinin-Radushkevich analyses on equilibrium adsorption of activated carbon fabrics in aqueous solutions[J]. Journal of Chemical Technology & Biotechnology, 2015,75(11):1066-1072.
[54]
Körbahti B K. Response surface optimization of electrochemical treatment of textile dye wastewater[J]. Journal of Hazardous Materials, 2007,145(1):277-286.
[55]
Tong D S, Zhou C H, Yan L, et al. Adsorption of Acid Red G dye on octadecyl trimethylammonium montmorillonite[J]. Applied Clay Science, 2010,50(3):427-431.
[56]
庄玲华.银杏黄酮苷在吸附树脂上的吸附、解吸行为研究[D]. 四川大学, 2003. Zhuang L H. Studies on the adsorption and desorption aetions of ginkgo flavonol glyeosides on adsorbent[D]. Sichuan University, 2003.
[57]
姜德彬,余静,叶芝祥,等.磁性纳米复合物对水中亚甲基蓝的吸附及其机理[J]. 中国环境科学, 2016,36(6):1763-1772. Jiang D B, Yu J, Ye Z X, et al. Adsorption and mechanism of methylene blue from water by magnetic nanocomposites[J]. China Environmental Science, 2016,36(6):1763-1772.
[58]
Removal of congo red from aqueous solution by its sorption onto the metal organic framework MIL-100(Fe):equilibrium, kinetic and thermodynamic studies[J]. Desalination and Water Treatment, 2014, 56(3):1-13.
[59]
Ma J, Yu F, Zhou L, et al. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes[J]. Acs Appl Mater Interfaces, 2012, 4(11):5749-5760.
[60]
Hasan Z, Choi E J, Jhung S H. Adsorption of naproxen and clofibric acid over a metal-organic framework MIL-101functionalized with acidic and basic groups[J]. Chemical Engineering Journal, 2013, 219(3):537-544.
[61]
Iram M, Guo C, Guan Y, et al. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres[J]. Journal of Hazardous Materials, 2010,181(1-3):1039-1050.
[62]
汪欢.钛掺杂生物玻璃材料的制备及其吸附性能、光催化性能研究[D]. 天津工业大学, 2018. Wang H. Preparation of titanium-doped bioglass material and its adsorption and photocatalytic properties[D]. Tianjin Polytechnic University, 2018.
[63]
He F, Fan J, Ma D, et al. The attachment of FeO nanoparticles to graphene oxide by covalent bonding[J]. Carbon, 2010,48(11):3139-3144.
[64]
边晓林.TEMPO氧化改性芦苇秆吸附工业印染废水的研究[D]. 武汉工程大学, 2017. Bian X L. Study on Adsorption of Industrial Printing and Dyeing Wastewater by TEMPO-oxidized Reed Straw[D]. Wuhan Institute of Technology, 2017.
[65]
Wang S, Wei J, Lv S, et al. Removal of Organic Dyes in Environmental Water onto Magnetic-Sulfonic Graphene Nanocomposite[J]. Clean-Soil Air Water, 2013,41(10):992-1001.
[66]
陈梦瑶.吸附-絮凝联用处理两种阳离子染料废水的研究[D]. 武汉工程大学, 2017. Chen M Y. Study on Treatment of Two Kinds of Cationic Dye Wastewater by the Adsorption-flocculation[D]. Wuhan Institute of Technology, 2017.
[67]
Fu J, Xin Q, Wu X, et al. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres.[J]. Journal of Colloid & Interface Science, 2016,461:292-304.