1. Key Laboratory of Aerosol-Cloud Precipitation of China Meterological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract:During December 15th~18th, 2018, the characteristics of aerosols and ozone observed by lidar located in Wangdu, Hebei Province was analysed. The changes of the boundary layer were judged by the profile of the aerosol extinction coefficient, and then the influence of the atmospheric boundary layer on the ozone concentration in the near surface layer (300m) was studied. The results show that the boundary layer mainly affected the dry deposition of ozone and the vertical transport of high-altitude ozone. When controlled by local pollution, the near-surface ozone concentration was controlled by dry deposition, and decreased with the decrease of the height of the boundary layer. When the airflow from the northwest dominated, the ozone concentration is mainly affected by horizontal transport and high-altitude vertical transport.
杨少波, 曹念文, 范广强. 夜间近地表臭氧观测[J]. 中国环境科学, 2019, 39(11): 4494-4501.
YANG Shao-bo, CAO Nian-wen, FAN Guang-qiang. Near-surface ozone observation at night. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(11): 4494-4501.
黄小刚,赵景波.2016年长三角城市群O3浓度的时空变化规律[J]. 中国环境科学, 2018,38(10):13-22. Huang X G, Zhao J B. Characteristics of ozone and its relationship with meteorological factors in Beijing-Tianjin-Hebei Region[J]. China Environmental Science, 2018,38(10):13-22.
[2]
刘长焕,邓雪娇,朱彬,等.近10年中国三大经济区太阳总辐射特征及其与O3、PM2.5的关系[J]. 中国环境科学, 2018,38(8):2820-2829. Liu C H, Deng X J, Zhu B, et al. Characteristics of GSR of China's three major economic regions in the past 10years and its relationship with O3 and PM2.5[J]. China Environmental Science, 2018,38(8):2820-2829.
[3]
虞小芳,程鹏,古颖纲,等.广州市夏季VOCs对臭氧及SOA生成潜势的研究[J]. 中国环境科学, 2018,38(3):830-837. Yu X F, Cheng P, Gu Y G, et al. Formation potential of ozone and secondary organic aerosol from VOCs oxidation in summer in Guangzhou, China[J]. China Environmental Science, 2018,38(3):830-837.
[4]
Lou S, Liao H, Zhu B. Impacts of aerosols on surface-layer ozone concentrations in China through heterogeneous reactions and changes in photolysis rates[J]. Atmospheric Environment, 2014,85:123-138.
[5]
Geng F, Zhao C, Tang X, et al. Analysis of ozone and VOCs measured in Shanghai:A case study[J]. Atmospheric Environment, 2007,41(5):989-1001.
[6]
Jacobson M Z. Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed[J]. Journal of Geophysical Research:Atmospheres, 1998,103(D9):10593-10604.
[7]
Shi C, Wang S, Liu R, et al. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China[J]. Atmospheric Research, 2015,153:235-249.
[8]
Prospero J M, Schmitt R, Cuevas E, et al. Temporal variability of summer-time ozone and aerosols in the free troposphere over the eastern North Atlantic[J]. Geophysical Research Letters, 1995,22(21):2925-2928.
[9]
Banta R M, Senff C J, White A B, et al. Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode[J]. Journal of Geophysical Research:Atmospheres, 1998,103(D17):22519-22544.
[10]
Neu U, Thomas Künzle, Wanner H. On the relation between ozone storage in the residual layer and daily variation in near-surface ozone concentration-A case study[J]. Boundary-Layer Meteorology, 1994,69(3):221-247.
[11]
黄祖照,裴成磊,王宇骏,等.2017年广州市大气臭氧激光雷达组网观测分析[J]. 环境科学与技术, 2018,41(11):159-164. Huang Z Z, Pei C L, Wang Y J, et al. The Networking Observation and Analysis of Atmospheric Ozone Lidars in Guangzhou in 2017[J]. Environmental Science & Technology, 2018,41(11):159-164.
[12]
Banta R M, Shepson P B, Bottenheim J W, et al. Nocturnal cleansing flows in a tributary valley[J]. Atmospheric Environment, 1997,31(14):2147-2162.
[13]
Fernald F G. Analysis of atmospheric lidar observations:some comments[J]. Applied Optics, 1984,23(5):652-653.
[14]
张朝阳,苏林,陈良富.中国典型地区气溶胶激光雷达比反演与分析[J]. 中国激光, 2013,40(5):227-232. Zhang Z Y, Su L, Chen L F. Retrieval and Analysis of Aerosol Lidar Ratio at Several Typical Regions in China[J]. Chinese Journal of Lasers, 2013,40(5):227-232.
[15]
张亚宜,赵嶷飞.反演卷云激光雷达比的新方法[J]. 光电子·激光, 2013,24(9):1768-1773. Zhang Y Y, Zhao N F. A novel method of determining the lidar ratio in cirrus clouds[J]. Journal of Optoelectronics·Laser, 2013,24(9):1768-1773.
[16]
王向川,饶瑞中.大气气溶胶和云雾粒子的激光雷达比[J]. 中国激光, 2005,32(10):1321-1324. Wang X C, Rao R Z. Lidar ratios for atmospheric aerosol and cloud particles[J]. Chinese Journal of Lasers, 2005,32(10):1321-1324.
[17]
宋跃辉,时丽丽,王玉峰,等.气溶胶激光雷达比的迭代反演[J]. 中国激光, 2016,43(1):191-198. Song Y H, Shi L L, Wang Y F, et al. Retrieve of lidar ratio of aerosols by iteration[J]. Chinese Journal of Lasers, 2016,43(1):191-198.
[18]
Krueger A J, Minzner R A. A Mid latitude ozone model for the 1976 U.S. standard atmosphere[J]. Journal of Geophysical Research Atmospheres, 1976,81(24):4477-4481.
[19]
Franch B, Vermote E F, Sobrino J A, et al. Analysis of directional effects on atmospheric correction[J]. Remote Sensing of Environment, 2013,128(1):276-288.
[20]
王治华,贺应红,李振声,等.气溶胶后向散射消光对数比对消光系数反演的影响研究[J]. 量子电子学报, 2006,23(3):335-340. Wang Z H, He Y H, Li Z S, et al. Effects of backscatter extinction logarithmic ratio on the inversion of aerosol extinction coefficiency[J]. Chinese Journal of Quantum Electronics, 2006,23(3):335-340.
[21]
孙景群.激光遥测大气消光系数的误差分析[J]. 气象学报, 1989,47(3):78-82. Sun J. An error analysis of laser remote measurement of atmospheric extinction coefficient[J]. Acta Meteorologica Sinica, 1989,47(3):332-336.
[22]
林常青,杨东伟,李成才,等.北京地区大气气溶胶的激光雷达观测及反演算法研究[J]. 北京大学学报自然科学版, 2013,49(3):426-434. Lin C Q, Yang D W, Li C C, et al. A micro-pulse lidar observation of aerosol in Beijing and retrieval algorithm research[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013,49(3):426-434.
[23]
Collis R T H. Lidar:A new atmospheric probe[J]. Quarterly Journal of the Royal Meteorological Society, 1967,92(398):220-230.
[24]
贺应红,郑玉臣,程娟,等.最小二乘法拟合大气激光雷达回波信号估算消光系数边界值[J]. 量子电子学报, 2004,21(6):879-883. He Y H, Zheng Y C, Cheng J, et al. Estimation of extinction efficient boundary value with least-square fitting for lidar return signal[J]. Chinese Journal of Quantum Electronics, 2004,21(6):879-883.
[25]
黄俊,廖碧婷,王春林,等.新型垂直探测资料在污染天气分析中的应用[J]. 中国环境科学, 2019,39(1):92-105. Huang J, Liao B T, Wang C L, et al. Application of new vertical detection data in the analysis of a heavy pollution weather[J]. China Environmental Science, 2019,39(1):92-105.
[26]
范广强,张天舒,付毅宾,等.差分吸收激光雷达监测北京灰霾天臭氧时空分布特征[J]. 中国激光, 2014,41(10):247-254. Fan G Q, Zhang T S, Fu Y B, et al. Temporal and spatial distribution characteristics of ozone based on differential absorption lidar in Beijing[J]. Chinese Journal of Lasers, 2014,41(10):247-254.
[27]
Dickerson R R, Rhoads K P, Carsey T P, et al. Ozone in the remote marine boundary layer:A possible role for halogens[J]. Journal of Geophysical Research, 1999,104(D17):21385.
[28]
Salmond J A, Mckendry I G. Secondary ozone maxima in a very stable nocturnal boundary layer:observations from the Lower Fraser Valley, BC[J]. Atmospheric Environment, 2002,36(38):5771-5782.
[29]
Corsmeier U, Kalthoff N, Kolle O, et al. Ozone concentration jump in the stable nocturnal boundary layer during a LLJ-event[J]. Atmospheric Environment, 1997,31(13):1977-1989.
[30]
Beyrich F, Weisensee U, Sprung D, et al. Comparative analysis of sodar and ozone profile measurements in a complex structured boundary layer and implications for mixing height estimation[J]. Boundary-Layer Meteorology, 1996,81(1):1-9.
[31]
Coulter R L. A case study of turbulence in the stable nocturnal boundary layer[J]. Boundary-Layer Meteorology, 1990,52(1):75-91.
[32]
Reitebuch O, Strassburger A, Emeis S, et al. Nocturnal secondary ozone concentration maxima analysed by sodar observations and surface measurements[J]. Atmospheric Environment, 2000,34(25):4315-4329.
[33]
Shepson P B, Bottenheim J W, Hastie D R, et al. Determination of the relative ozone and PAN deposition velocities at night[J]. Geophysical Research Letters, 1992:19.