Using PM2.5 and population grid data, the population exposures risk to PM2.5 in China from 2000 to 2016 were calculated. In addition, the temporal and spatial characteristics of population exposures risk to PM2.5 during the 17 years were analyzed by using Theil-Sen Median trend analysis, standard deviation and Hurst index. The results showed that:①the population exposures risk to PM2.5 in the past 17 years had great differences on both sides of Hu Huanyong Line. The risk in the East was high and in the West was low. The average annual risk in the East was 2.787, while that in the west was 0.065. ②There were obvious differences in the range of risk changes on both sides of the Hu Huanyong line during 2000 to 2016. In the west, the overall trend was declining, while the risk has gone up again obviously in 2011 and 2015; From 2001, the risk in the East increased rapidly and remained stable until 2015, then it fell back. ③The stability and sustainability of the population exposures risk to PM2.5 were significantly different on both sides of Hu Huanyong Line. The main characteristics of the population exposures risk to PM2.5 were instability and weak anti-sustainability in the East and stability and strong sustainability in the west. ④The total population and population density at dangerous and extremely dangerous levels showed a high spatial distribution in the East and a low spatial distribution in the West.
张亮林, 潘竟虎. 中国PM2.5人口暴露风险时空格局[J]. 中国环境科学, 2020, 40(1): 1-12.
ZHANG Liang-lin, PAN Jing-hu. Spatial-temporal pattern of population exposure risk to PM2.5 in China. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(1): 1-12.
张永年,潘竟虎.基于DMSP/OLS数据的中国碳排放时空模拟与分异格局[J]. 中国环境科学, 2019,39(4):1436-1446. Zhang Y N, Pan J H. Spatio-temporal simulation and differentiation pattern of carbon emissions in China based on DMSP/OLS nighttime light data[J]. China Environmental Science, 2019,39(4):1436-1446.
[2]
Birch E L. A review of "climate change 2014:impacts, adaptation, and vulnerability" and "climate change 2014:mitigation of climate change."[J]. Journal of the American Planning Association, 2014, 80(2):184-185.
[3]
Wang H, Dwyer-Lindgren L, Lofgren K T, et al. Age specific and sex-specific mortality in 187countries, 1970~2010:A systematic analysis for the global burden of disease study 2010[J]. Lancet, 2012,380(9859):2071-2094.
[4]
周亮,周成虎,杨帆,等. 2000~2011年中国PM2.5时空演化特征及驱动因素解析[J]. 地理学报, 2017,72(11):2079-2092. Zhou L, Zhou C H, Yang F, et al. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2011[J]. Acta Geographica Sinica, 2017,72(11):2079-2092.
[5]
别同,韩立建,田淑芳,等.城市化对空气污染人群暴露贡献的定量方法研究[J]. 生态学报, 2018,38(13):4570-4583. Bie T, Han L J, Tian S F, et al. Method for quantifying the contribution of urbanization on population exposure to air pollution[J]. Acta Ecologica Sinica, 2018,38(13):4570-4583.
[6]
Han L J, Zhou W Q, Li W F. City as a major source area of fine particulate (PM2.5) in China[J]. Environmental Pollution, 2015, 206(11):183-187.
[7]
郁珍艳,高大伟,李正泉,等.华东区域PM2.5变化背景下浙江省人口经济暴露水平评估[J]. 环境科学, 2017,38(12):4924-4931. Yu Y Z, Gao D W, Li Z Q, et al. Exposure level of population and economy in Zhejiang Province considering the background of PM2.5 in east China[J]. Environmental Science, 2017,38(12):4924-4931.
[8]
Abtahi M, Dobaradaran S, Torabbeigi M, et al. Health risk of phthalates in water environment:Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in Tehran, Iran[J]. Environmental Research, 2019,173(4):469-479.
[9]
王钊,韩斌,倪天茹,等.天津市某社区老年人PM2.5暴露痕量元素健康风险评估[J]. 环境科学研究, 2013,26(8):913-918. Wang Z, Han B, Ni T R, et al. Health risk assessment of trace elements of PM2.5 exposure for the elderly subpopulation in Tianjin, China[J]. Research of Environmental Sciences, 2013,26(8):913-918.
[10]
Zheng G J, Duan F K, Su H, et al. Exploring the severe winter haze in Beijing:The impact of synoptic weather, regional transport and heterogeneous reactions[J]. Atmospheric Chemistry and Physics, 2015, 15(6):2969-2983.
[11]
Chen L, Shi M, Gao S, et al. Assessment of population exposure to PM2.5 for mortality in China and its public health benefit based on BenMAP[J]. Environmental Pollution, 2017,221(2):311-317.
[12]
Zhang Y L, Cao F. Fine particulate matter (PM2.5) in China at a city level[J]. Scientific Reports, 2015,5(10):14884.
[13]
江佳,邹滨,陈璟雯.中国大陆1998年以来PM2.5浓度时空分异规律[J]. 遥感信息, 2017,32(1):28-34. Jiang J, Zou B, Chen J W. Spatial-temporal distribution of PM2.5 concentrations in main land China since 1998[J]. Remote Sensing Information, 2017,32(1):28-34.
[14]
吴浪,周廷刚,温莉,等.基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018,27(9):244-254. Wu L, Zhou T G, Wen L, et al. Study on spatio-temporal relationship between PM2.5and urbanization based on remote sensing data:A case study of Chengdu-Chongqing urban agglomeration[J]. Resources and Environment in the Yangtze Basin, 2018,27(9):244-254.
[15]
王雪梅,李新,马明国.基于遥感和GIS的人口数据空间化研究进展及案例分析[J]. 遥感技术与应用, 2004,19(5):320-327. Wang X M, Li X, Ma M G. Advance and case analysis in population spatial distribution based on remote sensing and GIS[J]. Remote Sensing Technology and Application, 2004,19(5):320-327.
[16]
刘修岩,李松林,秦蒙.开发时滞、市场不确定性与城市蔓延[J]. 经济研究, 2016,51(8):159-171. Liu X Y, Li S L, Qin M. Development lag, market uncertainty and urban sprawl[J]. Economic Research Journal, 2016,51(8):159-171.
[17]
王金南,蔡博峰.中国垃圾填埋场恶臭影响人口和人群活动研究[J]. 环境工程, 2016,34(2):5-9. Wang J N, Cai B F. Estimation of population and human activities impacted by the odors of landfills in China[J]. Environmental Engineering, 2016,34(2):5-9.
[18]
Kousa A, Oglesby L, Koistinen K, et al. Exposure chain of urban air PM2.5-associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study[J]. Atmospheric Environment, 2002,36(18):3031-3039.
[19]
邹滨,彭芬,焦利民,等.高分辨率人口空气污染暴露GIS空间区划研究[J]. 武汉大学学报(信息科学版), 2013,38(3):334-338. Zou B, Peng F, Jiao L M, et al. GIS aided spatial zoning of high-resolution population exposure to air pollution[J]. Geomatics and Information Science of Wuhan University, 2013,38(3):334-338.
[20]
Sen P K. Estimates of the regressions coefficient based on Kendall's tau[J]. Journal of the American Statistical Association, 1968,63(324):1379-1389.
[21]
Kendall M G. Rank correlation methods[J]. British Journal of Psychology, 1955,25(1):86-91.
[22]
徐建华.现代地理学中的数学方法[M]. 北京:高等教育出版社, 2016:133-136. Xu J H. Mathematical methods in contemporary geography. Beijing[M]:Higher Education Press, 2016:133-136.
[23]
Hurst H E. Closure to long-term storage capacity of reservoirs by H. E. Hurst[J]. Transactions of the American Society of Civil Engineers, 2013,116:804-808.
[24]
胡焕庸.中国人口之分布——附统计表与密度图[J]. 地理学报, 1935,2(2):33-74. Hu H Y. On population distribution in China[J]. Acta Geographica Sinica, 1935,2(2):33-74.
[25]
同丽嘎,李雪铭,黄哲,等.包头市人口PM2.5暴露风险研究[J]. 干旱区资源与环境, 2017,31(11):50-54. Tong L G, Li X M, Huang Z, et al. Study on risk of population exposure to PM2.5 in Baotou City[J]. Journal of Arid Land Resources and Environment, 2017,31(11):50-54.
[26]
张西雅,扈海波.基于多源数据的北京地区PM2.5暴露风险评估[J]. 北京大学学报(自然科学版), 2018,54(5):1103-1113. Zhang X Y, Hu H B. Risk assessment of exposure to PM2.5 in Beijing using multi-source data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018,54(5):1103-1113.
[27]
张亮林,潘竟虎,张大弘.基于MODIS数据的中国气溶胶光学厚度时空分布特征[J]. 环境科学学报, 2018,38(11):4431-4439. Zhang L L, Pan J H, Zhang D H. Spatio-temporal distribution characteristics of aerosol optical depths in China based on MODIS data[J]. Acta Scientiae Circumstantiae, 2018,38(11):4431-4439.
[28]
Chen J, Zhou C, Wang S, et al. Identifying the socioeconomic determinants of population exposure to particulate matter PM2.5 in China using geographically weighted regression modeling[J]. Environmental Pollution, 2018,241(10):494-503.