Heavy metal pollution in a uranium mining and metallurgy area in South China
JING Chen-xin1,2,3, KONG Qiu-mei1, FENG Zhi-gang1
1. Hengyang Key Laboratory of Geological Theory and Technology for the Nuclear Fuel Cycle, School of Resources, Environment and Safety Engineering, University of South China, Hengyang 421001, China;
2. Laboratory of High Temperature and High Pressure of Internal Matter, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 55008, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Two background profiles (B1, B2) and three potentially polluted profiles (S1, S2, S3) around a uranium tailings pond in South China were selected. The characteristics and behaviors of exogenous heavy metal pollution in the soil of uranium tailings pond were discussed by comparing the distributions of heavy metal elements in each profile. Results showed that:(1) Compared with the background profile, the main and minor components in the soil adjacent to the uranium tailings reservoir were significantly input. (2) The tailings pond was the direct source of soil heavy metal pollution in the area, and the heavy metals such as As, Pb, Sb, Cd and U were transported to the peripheral soil, as shown in PCA. (3) The metal elements in potential polluted soil were closely related to LOI (loss on ignition), K and P, and have secondary correlation with Na, CA, Mn, pH and Fe. Heavy metals were significantly enriched in potential polluted profile (S1 and S2) according to the leaching and migration degree of heavy metals. From the tailings pond to its surrounding soil, the lateral migration characteristics of the heavy metals were different. (4) The potential risks of the tailings pond should be controlled because from tailings pond to its surrounding soil 30m, As, Pb, Sb, Cd and U were significantly polluted, and their contents exceed much larger than the agricultural land soil pollution risk control standards and the background value of the soil elements specified in the provincial level.
景称心, 孔秋梅, 冯志刚. 中国南方某铀尾矿库周缘土壤重金属污染研究[J]. 中国环境科学, 2020, 40(1): 338-349.
JING Chen-xin, KONG Qiu-mei, FENG Zhi-gang. Heavy metal pollution in a uranium mining and metallurgy area in South China. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(1): 338-349.
张欣,彭小勇,黄帅.铀尾矿库滩面植被分布对尾矿砂大气迁移影响的数值模拟[J]. 安全与环境学报, 2013,13(6):269-273. Zhang X, Peng X Y, Huang S. Simulation for the impact of vegetation distribution on the migration of the tailing sands on the uranium tailings impoundment beach[J]. Journal of Safety and Environment, 2013,13(6):269-273.
[2]
万芬.铀尾矿库颗粒物大气迁移数值模拟与环境效应分析[D]. 衡阳:南华大学, 2013. Wan F. Numerical simulation on the atmospheric migration of particles of uranium tailings impoundment and environmental effect[D]. Hengyang:University of South China, 2013.
[3]
欧阳双龙.酸雨条件下铀尾矿库中U(VI)的迁移模拟研究[D]. 衡阳:南华大学, 2014. Ouyang S L. Simulation study on U(VI) migration in uranium tailings pond under acid rain[D]. Hengyang:University of South China, 2014.
[4]
林达.某铀尾矿(库)地域浅层地下水中铀迁移的随机模拟研究[D]. 衡阳:南华大学, 2008. Lin D.Stochastic simulation research of uranium migration in shallow groundwater at uranium mill-tailing sites[D]. Hengyang:University of South China, 2008.
[5]
周书葵,曾光明,许仕荣.铀尾矿库核素对地下水环境污染风险评价方法的研究[M]. 北京航空航天大学出版社, 2009:272-277. Zhou S K, Z G M, Xu S R. Study on the risk assessment method of uranium tailings pond nuclides to groundwater environmental pollution[M]. Beihang University Press, 2009:272-277.
[6]
张学礼,徐乐昌,张辉.某铀尾矿库周围农田土壤重金属污染潜在生态风险评价[J]. 中国环境监测, 2016,32(6):76-83. Zhang X L, Xu L C, Z H. Potential ecological risk assessment of heavy metals contamination in farmland soils near an uranium tailings pond[J]. China Environmental Monitoring, 2016,32(6):76-83.
[7]
潘英杰.我国铀矿冶设施退役环境治理现状及应采取的对策[J]. 铀矿冶, 1997,16(4):227-236. Pan Y J. Status quo of environmental treatment and countermeasures ought to be taken during installations decommissioning of uranium mining and metallurgy in china[J]. Uranium Mining and Metallurgy, 1997,16(4):227-236.
[8]
潘英杰,李玉成,薛建新,等.我国铀矿冶设施退役治理现状及对策[J]. 辐射防护, 2009,29(3):167-171,198. Pan Y J, Li Y C, Xue J X, et al. Status and countermeasures for decommissioning of uranium mine and mill facilities in china[J]. Radiation Protection, 2009,29(3):167-171,198.
[9]
Abdelouas A. Uranium mill tailings:geochemistry,mineralogy and environmental impact[J]. Elements, 2006,2(6):335-341.
[10]
Nriagu J, Nam D-H, Ayanwola T A, et al. High levels of uranium in groundwater of Ulaanbaatar, Mongolia[J]. Science of the Total Environment, 2012,(414):722-726.
[11]
杨巍,杨亚新,曹龙生,等.某铀尾矿库中放射性核素对环境的影响[J]. 华东理工大学学报(自然科学版), 2011,34(2):155-159. Yang W, Yang Y X, C L S, et al. Environmental impact of radionuclides from uranium tailings[J]. Journal of east China University of Science and Technology (natural science edition), 2011, 34(2):155-159.
[12]
张学礼,徐乐昌,魏广芝,等.铀矿冶放射性固体废物最小化[J]. 铀矿冶, 2010,29(4):204-209. Zhang X L, Xu L C, Wei G Z, et al. Minimization of radioactive solid wastes from uranium mining and metallurgy[J]. Uranium Mining and Metallurgy, 2010,29(4):204-209.
[13]
杜洋,朱晓杰,高柏,等.铀矿山尾矿库区典型场地中铀的分布特征[J]. 有色金属(矿山部分), 2014,66(1):5-9. Du Y, Zhu X J, Gao B, et al. Distribution characteristics of uranium in typical sites of tailings pond in uranium mine[J]. Nonferrous Metals (part of mine), 2014,66(1):5-9.
[14]
向龙,刘平辉,张淑梅.华东某铀矿区地表水中放射性核素铀含量特征分析[J]. 地球与环境, 2016,44(4):455-461. Xiang L, Liu P G, Zhang S M. Characterisctcs of Uranium Content in Surface Water of a Uranium Mine in Eastern China[J]. Earth and Environment, 2016,44(4):455-461.
[15]
李国辉,刘永,招国栋,等.退役铀尾矿库环境稳定性分析及应用[J]. 工业安全与环保, 2016,42(9):74-77. Li G H, Liu Y, Zhao G D, et al. Analysis and application of environmental stability of decommissioned uranium tailings ponds[J]. Industrial Safety and Environmental Protection, 2016,42(9):74-77.
[16]
李俊.272厂铀尾矿库放射性核素迁移模拟研究[D]. 南昌:东华理工大学, 2013. Li J. 272 mill uranium tailings simulation study of radionuclide migration[D]. Nanchang:Donghua University of Technology, 2013.
[17]
梁连东,冯志刚,马强,等.中国南方某铀尾矿库中铀的赋存形态及其活性研究[J]. 环境污染与防治, 2014,36(2):11-14. Liang L D, Feng Z G, Ma Q, et al. Study on the occurrence form and activity of uranium in Hunan uranium tailings[J]. Environmental Pollution and Control, 2014,36(2):11-14.
[18]
孔秋梅,冯志刚,马强,等.中国南方某铀尾矿库周边土壤外源铀输入机制的研究[J]. 地球与环境, 2017,45(2):135-144. Kong Q M, Feng Z G, Ma Q, et al. Input mechanisms of exotic uranium in soils around a uranium mill tailings pond in Hunan Province,China[J]. Earth and Environment, 2017,45(2):135-144.
[19]
裴晶晶,胡南,张辉,等.铀尾矿中不同形态铀释放的影响因素及其相关性[J]. 中国环境科学, 2019,39(7):3073-3080. Pei J J, Hu n, Zhang h, et al. Factors influencing the release of different forms of uranium in uranium tailings and their correlation[J]. Chinese journal of environmental sciences, 2019,39(7):3073-3080.
[20]
魏浩,薛清泼,张国瑞,等.某铀尾矿库下游农田土壤重金属污染程度及其风险评价[J]. 矿产保护与利用, 2018,(6):132-139. Wei H, Xue Q P, Zhang G R, et al. Heavy Metal Pollution Degree and Its Risk Assessment of Farmland Soil in the Downstream of a Uranium Tailings Pond[J]. Mineral Protection and Utilization, 2018,(6):132-139.
[21]
曾雨.某铀尾矿库周边土壤重金属污染评价[D]. 绵阳:西南科技大学, 2018. Zeng Y.Heavy metal pollution assessments of soil around a uranium tailings pond[D]. Mianyang:Southwest University of Science and Technology, 2018.
[22]
曾雨,王卫红,王哲.某铀尾矿库区周边土壤重金属污染的评价与空间分布特征[J]. 科技资讯, 2017,15(34):101-104. Zeng Yu, Wang W H, Wang Z. Evaluation and spatial distribution characteristics of heavy metal pollution in the soil surrounding a uranium tailings pond[J]. Science and Technology Information, 2017, 15(34):101-104.
[23]
张学礼,徐乐昌,张辉.某铀尾矿库周围农田土壤重金属污染与评价[J]. 环境科学与技术, 2015,38(6):221-226. Zhang X L, Xu L C, Zhang H. Heavy metal pollution and evaluation of farmland soil around a uranium tailings pond[J]. Environmental Science and Technology, 2015,38(6):221-226.
[24]
马腾,王焰新.U(Ⅵ)在浅层地下水系统中迁移的反应-输运耦合模拟——以我国南方核工业某尾矿库为例[J]. 地球科学——中国地质大学学报, 2000,25(5):456-461. Ma T, Wang Y N. Coupled reaction-transport modeling of migration of uranium (Ⅵ) in shallow groundwater system:A case study of uranium gangue site in southern china[J]. Journal of Earth Science, China University of Geosciences, 2000,25(5):456-461.
[25]
李先杰,蔡振民,何文星,等.铀尾矿库滩面含水量分布与氡析出率预测[J]. 铀矿冶, 2005,24(3):145-148. Li X J, Cai Z M, He W X, et al. Prediction of water content distribution and radon exudation rate on beach surface of uranium tailings pond[J]. Uranium Mining & Metallurgy, 2005,24(3):145-148.
[26]
吴迪,唐晓先,杨柳,等.巢湖柘皋河沉积物重金属分布特征与风险评价[J]. 安徽农业大学学报, 2017,44(3):448-457. Wu D, Tang X X, Yang L, et al. Distribution characteristics and risk assessment of sedimentary heavy metals in Zhegao River of Chaohu Lake[J]. Journal of anhui agricultural university, 2017,44(3):448-457.
[27]
Raul P. Quezada-Hinojosa, Karl B, et al. Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains[J]. catena, 2015,125:10-32.
[28]
尚桢.黄河上游典型区域底泥重金属的含量分析与污染评价[D]. 兰州:兰州交通大学, 2016. Shang Z. Content analysis and pollution evaluation of heavy metals in sediment in typical areas of the upper reaches of the Yellow River[D]. Lanzhou:lanzhou Jiaotong university, 2016.
[29]
Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutite[J]. Nature, 1982,299:715-717.
[30]
McLennan S M. Weathering and global denudation[J]. Journal of Geology, 1993,101(2):295-303.
[31]
黄昌勇.土壤学[M]. 北京:中国农业出版社, 2005. Huang C Y. Soil Science[M]. Beijing:China Agricultural Press, 2005.
[32]
朱鹤键,何宜庚.土壤地理学[M]. 北京:高等教育出版社, 1992. Zhu H J, He Y G. Soil Geography[M]. Beijing:Higher Education Press, 1992.
[33]
GB 15618-2018中国环境质量农用地土壤污染风险管控标准(试行)[S].GB 15618-2018 China standards for the control of soil pollution risks in agricultural land of environmental quality (trial)[S].
[34]
魏复盛,陈静生,吴燕玉.中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990. Wei F S, Chen J S, Wu Y Y. Background values of soil elements in China[M]. Beijing:China Environmental Science Press, 1990.
[35]
罗春娥.急性砷中毒致神经损害电生理表现1例报道[J]. 现代医药卫生, 2015,31(22):3526. Luo C Y. A case report of electrophysiological manifestations of nerve damage caused by acute arsenic poisoning[J]. Journal of Modern Medicine and Health, 2015,31(22):3526.
[36]
陈静,杨万里,胡雪.砷中毒所致皮肤毒性的临床诊断及治疗[J]. 中国现代医生, 2017,55(3):78-81.Chen J, Yang W L, Hu X. Clinical diagnosis and treatment of skin toxicity caused by arsenic poisoning[J]. Modern Chinese Physician, 2017,55(3):78-81.
[37]
邵祥龙,朱效宁,成玉萍,柏品清.上海市6区县食用菌中铅含量测定及暴露评估[J]. 中国卫生检验杂志, 2017,27(6):892-895. Shao X L, Zhu X N, Cheng Y P, B P Q. Lead content in edible fungi and the exposure assessment in 6 districts of Shanghai[J]. Chinese Journal of Health Inspection, 2017,27(6):892-895.
[38]
张美娜.食品中铅含量测定的质量控制必要性[J]. 广东蚕业, 2018,52(11):13-14. Zhang M N. The necessity of quality control for determination of lead in food[J]. Guangdong Silkworm Industry, 2008,52(11):13-14.
[39]
刘会,王旭.环境损害致生活性镉中毒与肝损害因果关系分析1例[J]. 法医学杂志, 2016,32(4):314-315. Liu H, Wang X. Analysis of cause-and-effect relationship between living cadmium poisoning caused by environmental damage and liver damage in 1 case[J]. Journal of Forensic Science, 2016,32(4):314-315.
[40]
李文,安飞云,高泽宣,等.三氧化二锑中毒性肝损害的实验研究[J]. 职业医学, 1997,24(3):14-16. Li W, An F Y, Gao Z X, et al. Experimental study on toxic liver damage caused by antimony trioxide[J]. Occupational Medicine, 1997,24(3):14-16.
[41]
王世俊.金属中毒.第二版[M]. 北京:人民卫生出版社, 1988. Wang S J. Metal Poisoning (Second edition)[M]. Beijing:People's Medical Publishing House, 1988.
[42]
张珩,李积胜.铀对人体影响的机制及防治[J]. 国外医学(卫生学分册), 2004,31(2):80-84. Zhang H, Li J S. Mechanism and prevention of uranium's influence on human body[J]. Foreign Medicine (health science), 2004,31(2):80-84.