Preparation of F-SnO2/GAC particle electrode and its electrocatalytic performance
ZHENG Shuai, FAN Yun-shuang, WEN Chen, ZHU Li-jie, YIN Bao-he
State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
F-SnO2/GAC particle electrode was prepared by sol-gel method using granular activated carbon (GAC) as substrate. Scanning electron microscopy (SEM), Energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Cyclic voltammetry curve(CV) were used to characterize the particle electrode. And it's electrocatalytic performance was investigated with Rhodamine B (RhB) as the target pollutant. The results showed that:F-SnO2 nanoparticles are uniformly distributed on the inner and outer surfaces of the GAC, and the crystals are intact; the SnO2 active components modified by F- doping can increase the amount of transition charges in the reaction system and improve the electrocatalytic activity. When the mass concentration of RhB was 300mg/L, the initial pH 3, the voltage was 9V and reaction time 30minutes, the decolorization rate and COD removal rate of RhB by 10%F-SnO2/GAC particle electrode calcined at 500℃ for 2h reached 97.6% and 89.0%. Electron spin resonance (ESR) technology has determined the electrocatalytic process mainly by indirect oxidation of hydroxyl radicals (·OH) to remove contaminants.
乔启成,李亚,金洁蓉,等.Sn-Ce-Sb/γ-Al2O3粒子电极体系降解AO Ⅱ的历程与机理[J]. 中国环境科学, 2017,37(7):2607-2614. QIAO Q C, LI Y, JIN J R, et al. Reaction pathway and mechanism of the degradation of acid orange Ⅱ by Sn-Ce-Sb/γ-Al2O3particle electrodes[J]. China Environmental Science, 2017,37(7):2607-2614.
[2]
Bo ge Z, Yan ping H, Ze bin Y, et al. Three-dimensional electro-Fenton degradation of Rhodamine B with efficient Fe-Cu/kaolin particle electrodes:Electrodes optimization, kinetics, influencing factors and mechanism[J]. Separation and Purification Technology, 2018:S1383586618318100.
[3]
Sun W, Sun Y, Shah K J, et al. Electrocatalytic oxidation of tetracycline by Bi-Sn-Sb/γ-Al2O3 three-dimensional particle electrode[J]. Journal of Hazardous Materials, 2018,370:24-32.
[4]
张显峰,赵朝成,王德军,等.基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能[J]. 材料导报, 2017,(8):25-30. Zhang X F, Zhao C C, Wang D J, et al. Electrocatalytic performance of three-dimensional electrode system with SnO2/Fe3O4 particle electrode[J]. Materials Reports, 2017,(8):25-30.
[5]
杨胜翔,王立章,伍波,等.基于AC/SnO2-Sb粒子电极的苯酚电催化氧化[J]. 化工进展, 2016,35(4):1130-1236. Yang S X, Wang L Z, Wu B, et al. Electrochemical oxidation of phenol on AC/SnO2-Sb particle electrodes[J]. Chemical Industry and Engineering Progress, 2016,35(4):1130-1236.
[6]
Sun Y, Li P, Zheng H L, et al. Electrochemical treatment of chloramphenicol using Ti-Sn/γ-Al2O3, particle electrodes with a three-dimensional reactor[J]. Chemical Engineering Journal, 2017, 308:1233-1242.
[7]
Kadhim I H, Hassan H A, Abdullah Q N. Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates[J]. Nano-Micro Letters, 2016,8(1):20-28.
[8]
杨玉婷,祝柏林,谢挺,等.射频反应磁控溅射制备的SnO2及SnO2:F薄膜结构与透明导电性能[J]. 硅酸盐学报, 2017,(4):472-477. Yang Y T, Zhu B L, Xie T, et al. Structure and transparent conductive properties of SnO2 and SnO2:F films deposited by RF reactive magnetron sputtering[J]. Journal of the Chinese Ceramic Society, 2017,(4):472-477.
[9]
Wang L Z, Zhao Y M, Duan C L, et al. Anode polarization character of metallic oxides loaded granular actived carbon during phenol electro-oxidation in a three dimensional Electrode Reactor[J]. Procedia Engineering, 2015,102:249-255.
[10]
蔡卫,陈玲玲,葛存旺,等.聚酰亚胺绝缘粒子制备及对染料废水的电催化降解[J]. 工程塑料应用, 2014,(8):21-25. Cai W, Chen L L, Ge C W, et al. Preparation of polyimide insulating particle and its application in electrocatalytic degradation of dye waste water[J]. Engineering Plastics Application, 2014,(8):21-25.
[11]
王立坤,郁建元,王丽,等.掺杂对二氧化锡薄膜光电性能的影响[J]. 硅酸盐学报, 2018,46(4):590-597. Wang L K, Yu J Y, Wang L, et al. Effect of doping on the photoelectric properties of tin dioxide thin films[J].Journal of the Chinese Ceramic Society, 2018,46(4):590-597.
[12]
Yang J, Liu W, Dong L, et al. Studies on the structural and electrical properties of F-doped SnO2film prepared by APCVD[J]. Applied Surface Science, 2011,257(24):10499-10502.
[13]
Banerjee A N, Kundoo S, Saha P, et al. Synthesis and characterization of nano-crystalline fluorine-doped tin oxide thin films by Sol-Gel method[J]. Journal of Sol-Gel Science and Technology, 2003,28(1):105-110.
[14]
Kim H, Park H. A study on the electrical properties of fluorine doped direct-patternable SnO2 thin films[J]. Ceramics International, 2012, 38(supp-S1):S609-S612.
[15]
金秀彦.杂原子掺杂碳纳米材料在电催化中的应用[D]. 北京:北京化工大学, 2016. Jin X Y. Preparation and electrochemical application of heteroatom doped nanocarbons[D]. Beijing:Beijing University Of Chemical Technology, 2016.
[16]
Tang P, Qiu C, He J, et al. Effect of the substrate temperature on the properties of spray-deposited SnO2:F thin films[J]. Journal of Materials Science:Materials in Electronics, 2014,25(10):4369-4374.
[17]
倪佳珩,苏芸,耿博.SnO2/石英柱粒子电极的制备及降解四环素废水的研究[J]. 分析试验室, 2016,(6):641-644. Ni J H, Su Y, Geng B. Preparation of SnO2/quartz column particle electrode and the electro-catalytic activity for tetracycline degradation[J]. Chinese Journal of Analysis Laboratory, 2016,(6):641-644.
[18]
刘峻峰,冯玉杰,孙丽欣,等.钛基SnO2纳米涂层电催化电极的制备及性能研究[J]. 材料科学与工艺, 2006,14(2):200-203. Liu J F, Feng Y J, Sun L X, et al. Investigation on preparation and electrocatalytic characteristics of Ti-base SnO2 electrode with nan-coating[J]. Materials Science and Technology, 2006,14(2):200-203.
[19]
李保松,林安.Ti/IrO2-Ta2O5阳极的制备及其析氧电催化性能研究[J]. 稀有金属材料与工程, 2007,36(2):245-249. Li B S, Lin A. Preparation and characterization of Ti/IrO2-Ta2O5 anodes for oxygen evolution used to sulfate electrolysis[J]. Rare Metal Materials and Engineering, 2007,36(2):245-249.
[20]
Wong K N, Khiew P S, Isa D, et al. Facile synthesis of flower-like PbO as a precursor to form nano-dendritic PbO2 for positive active material (PAM) of lead-acid electrochemical storage devices[J]. Materials Letters, 2014,128:97-100.
[21]
伍波,李鹏,张波,等.负载型粒子电极电催化氧化苯酚的研究[J]. 中国环境科学, 2015,35(8):2426-2432. WU B, LI P, Zhang B, et al. Electro-catalytic performance of the activated carbon supported metal oxide as particulate electrode for phenol oxidation[J]. China Environmental Science, 2015,35(8):2426-2432.
[22]
赵霞, ISMOILOV Bakhrom,李亚斌,等.污水高级氧化技术的研究现状及其新进展[J]. 水处理技术, 2018,(4):7-10. Zhao X, Ismoilov Bakhrom, Li Y B, et al. Research status and new progress of advanced oxidation technology for wastewater treatment[J]. Technology of Water Treatment, 2018,(4):7-10.
[23]
Liu R, Zhang Y. Mechanism of UV driven photo electrocatalytic degradation berberine chloride form using the ESR spin-trapping method[J]. Photochemistry and Photobiology, 2018,94(4):1-9.
[24]
李新洋.填充负载型活性炭三维电极反应器的开发与试验研究[D]. 北京:清华大学, 2013. Li X Y. Development and experimental study of a three-dimensional electrode reactor packed with catalyst-coated granular activated carbons[D]. Beijing:Tsinghua University, 2013.
[25]
岳琳,王启山,石岩,等.CuO-CeO2/γ-Al2O3粒子电极对垃圾渗滤液降解特性[J]. 环境科学, 2008,(6):128-132. Yue L, Wang Q S, Shi Y, et al. Characteristics of electro-heterogeneous catalytic oxidation of landfill leachate with CuO-CeO2/γ-Al2O3 particle electrodes[J]. Environmental Science, 2008,(6):128-132.