Effects of temperature increase on meso-and micro-zooplankton community in thermal discharge seawaters near Guohua Power Plant
ZHANG Rui1, ZHU Yi-feng1,2, ZHAO Sheng-nan1, GUO Ya-jun1, LIN Xia1,2
1. School of Marine Sciences, Ningbo University, Ningbo 315823, China;
2. Key Laboratory of Applied Marine Biotechnology, the Ministry of Education, Ningbo University, Ningbo 315823, China
To explore whether temperature increase would lead to miniaturization of zooplankton in thermal discharge seawaters near the power plant, samples of zooplankton were collected by the type III net with mesh size of 77μm and data was analyzed. In total 75species (including pelagic larvae, eggs and fish larva) were identified with 18dominant species. The annual average abundance was up to 27690.0ind/m3. These communities were mainly composed of meso-and micro-copepods and pelagic larvae, meanwhile dominanted by meso-and micro-zooplankton with a body length <1000μm. Among them, microzooplankton with a length<500μm had the highest abundance in each month and section, its average accounted for over 58.2% of total abundance. The average of zooplankton with a body length of 500~1000μm accounted for over 34.8%. Zooplankton with a body length >1000μm only accounted for 7%. Analysis of similarity (ANOSIM) showed that community structures among seasons were significant different (P<0.05), while among sections were not significant different. Similarity percentage (SIMPER) analysis found the most important discriminating species causing seasonal differences were Oithona similis, Oikopleura dioica and Difflugia sp., etc. Besides, macrozooplankton (>2000μm) were all away from D02section driven by thermal seawater, major larval groups (copepod nauplii and Copepodites) were almost unaffected evenly distributed in the warming seawater. Moreover, a large number of microzooplankton, such as Difflugia sp., Oithona brevicornis and Oithona fallax gathered to the outfall, resulting in the highest abundance (35704.1ind/m3) at D02section. Diversity analysis showed that significant linear regression relationship existed between water temperature increment and the Shannon index (H'), Pielou evenness (J'), Simpson index (D') of zooplankton (P<0.05), however the relationship between water temperature increment and species number was not significant (P>0.05). Based on slope of regression equation, H' would decrease by 5.4%, J' by 5.0%, D' by 3.8% and S by 2.9% when increasing the temperature by 1℃.
张锐, 朱艺峰, 赵圣男, 国亚军, 林霞. 电厂增温对中小型浮游动物群落结构的影响[J]. 中国环境科学, 2020, 40(2): 839-850.
ZHANG Rui, ZHU Yi-feng, ZHAO Sheng-nan, GUO Ya-jun, LIN Xia. Effects of temperature increase on meso-and micro-zooplankton community in thermal discharge seawaters near Guohua Power Plant. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(2): 839-850.
Chew L, Chong C, Wong S, et al. Three decades of sea water abstraction by Kapar power plant (Malaysia)[J]. Marine Pollution Bulletin, 2015,101(1):69-84.
[2]
董丽.象山港海域典型生态系统调查与评价[D]. 上海:上海海洋大学, 2012. Dong L. Analysis and assessment on typical ecosystem in the semi-closed Xiangshan Harbor, China[D]. Shanghai:Shanghai Ocean University, 2012.
[3]
Kelly P, Clementson L, Davies C, et al. Zooplankton responses to increasing sea surface temperatures in the southeastern Australia global marine hotspot[J]. Estuarine, Coastal and Shelf Science, 2016, 180:242-257.
[4]
傅强,朱礼鑫,沈盎绿,等.滨海电厂温排水对临近海域浮游动物生态特征的影响研究[J]. 中国海洋大学学报(自然科学版), 2015, 45(7):25-33. Fu Q, Zhu L X, Shen X L, et al. Survey and comparision of seasonal influences of therfmal discharge from coastal powerr plant on zooplankton community[J]. Periodical of Ocean University of China, 2015,45(7):25-33.
[5]
Ltaief T B, Drira Z, Devenon J L, et al. How could thermal stratification affect horizontal distribution of depth-integrated metazooplankton communities in the Gulf of Gabes (Tunisia)?[J]. Marine Biology Research, 2017,13(3):269-287.
[6]
Jiang Z B, Zeng J N, Chen Q Z, et al. Potential impact of rising seawater temperature on copepods due to coastal power plants in subtropical areas[J]. Journal of Experimental Marine Biology and Ecology, 2009,368(2):196-201.
[7]
王扬才,吴雄飞,施慧雄,等.象山港电厂附近海域浮游动物群落特征研究[J]. 宁波大学学报(理工版), 2011,24(3):5-10. Wang Y C, Wu Q F, Shi H X, et al. Study on zooplankton communities near coastal power plants in Xiangshan Bay[J]. Journal of Ningbo University (NSEE), 2011,24(3):5-10.
[8]
刘育莎.福建三沙湾、兴化湾饵料浮游动物主要生态特征及次级产量的初步估算[D]. 厦门:厦门大学, 2009. Liu Y S. Studies of ecological characteristics of food zooplankton and estimation of secondary production in Sansha Bay and Xinghua Bay, Fujian Province[D]. Xiamen:Xiamen University, 2009.
[9]
Sundri M I, Gomoiu M T. Qualitative and quantitative structure of zooplankton as ociations in the Danube thermal discharge area of Nuclear Power Plant Cernavoda[J]. Geoecomarina, 2009:123-130.
[10]
Miloslavic M, Lucic D, Gangai B, et al. Mesh size effects on mesozooplankton community structure in a semi-enclosed coastal area and surrounding sea (South Adriatic Sea)[J]. Marine Ecology, 2015,35(4):445-455.
[11]
连喜平,谭烨辉,刘永宏,等.两种浮游生物网对南海北部浮游动物捕获效率的比较[J]. 热带海洋学报, 2013,32(3):33-39. Lian X P, Tan Y H, Liu Y H, et al. Comparison of capture efficiency for zooplankton in the northern South China Sea, using two plankton mesh sizes[J]. Journal of Tropical Oceanorgaphy, 2013,32(3):33-39.
[12]
于浩,刘光兴,陈洪举.3种浮游生物网对强壮箭虫捕获效率的比较研究[J]. 海洋学报, 2015,37(10):141-145. Yu H, Liu G X, Chen H J. A comparison study of the capyure efficiency for Sagitta crassa of three types of plankton nets[J]. Acta Oceanologica Sinica, 2015,37(10):141-145.
[13]
王荣,王克.两种浮游生物网捕获性能的现场测试[J]. 水产学报, 2003,27(z1):98-102. Wang R, Wang K. Field test of capture capabilities of two plankton nets[J]. Journal of Fisheries of China, 2003,27(z1):98-102.
[14]
黄秀清,王金辉,蒋晓山.象山港海洋环境容量及污染物总量控制研究[M]. 北京:海洋出版社, 2008:54-93. Huang X Q, Wang J H, Jiang X S. Studies on marine environmental capacity and total pollutant control in Xiangshan Harbor[M]. Beijing:China Ocean Press, 2008:54-93.
[15]
苗庆生,周良明,邓兆青.象山港电厂温排水的实测和数值模拟研究[J]. 海岸工程, 2010,29(4):1-11. Miao Q S, Zhou L M, Deng Z Q. Numerial simulation and in-situ measurement for heat discharge from Xiangshangang Power Plant into sea[J]. Coastal Engineering, 2010,29(4):1-11.
[16]
郑重,李少菁,许振祖.海洋浮游生物学[M]. 北京:海洋出版社, 1984:166-653. Zheng Z, Li S J, Xu Z Z. Marine planktology[M]. Beijing:China Ocean Press, 1984:166-653.
[17]
束蕴芳,韩茂森.中国海洋浮游生物图谱[M]. 北京:海洋出版社, 1992:24-206. Shu Y F, Han M L. Chinese marine plankton map[M]. Beijing:China Ocean Press, 1992:24-206.
[18]
萧贻昌.中国动物志,无脊椎动物.第38卷.毛颚动物门.箭虫纲[M]. 北京:科学出版社, 2004:67-155. Xiao Y C. Chinese fauna, invertebrates. Volume 38. Chaetognatha. Sagittidae[M]. Beijing:Science Press, 2004:67-155.
[19]
沈国英,黄凌风,郭丰,等.海洋生态学[M]. 北京:科学出版社, 2010:89-104. Shen G Y, Huang L F, Guo F, et al. Marine ecology[M]. Beijing:Science Press, 2010:89-104.
[20]
Clarke K R, Gorley R N. PRIMER v6:User Manual/Tutorial[M]. Plymouth:Primer-E, 2006:69-84.
[21]
Clarke K R, Warwick R M. Change in marine communities:An approach to statistical analysis and interpretation (2nd ed)[M]. Plymouth:Primer-E, 2001.
[22]
Pansera M, Granata A, Guglielmo L, et al. How does mesh-size selection reshape the description of zooplankton community structure in coastal lakes?[J]. Estuarine Coastal & Shelf Science, 2014,151:221-235.
[23]
Makabe R, Tanimura A, Fukuchi M. Comparison of mesh size effects on mesozooplankton collection efficiency in the Southern Ocean[J]. Journal of Plankton Research, 2012,34(5):432-436.
[24]
Mack H R, Conroy J D, Blocksom K A, et al. A comparative analysis of zooplankton field collection and sample enumeration methods[J]. Limnology & Oceanography Methods, 2012,10(1):41-53.
[25]
朱艺峰,王银,林霞,等.象山港两种网目网采浮游动物群落比较[J]. 应用生态学报, 2012,23(8):2277-2286. Zhu Y F, Wang Y, Lin X, et al. A comparison of zooplankton communities collected by two types of nets with different mesh sizes in Xiangshan Bay of Zhejiang, East China[J]. Chinese Journal of Applied Ecology, 2012,23(8):2277-2286.
[26]
朱艺峰,黄简易,林霞,等.象山港国华电厂强增温海域浮游动物群落结构和多样性的时空特征[J]. 环境科学, 2013,34(4):1498-1509. Zhu Y F, Hang J Y, Lin X, et al. Spatiotemporal characteristics of zooplankton community structure and diversity in the strong temperature increment seawaters near Guohua Power Plant in Xiangshan Bay[J]. Environmental Science, 2013,34(4):1498-1509.
[27]
Hikichia H, Arimaa D, Abe Y, et al. Seasonal variability of zooplankton size spectra at Mombetsu Harbour in the southern Okhotsk Sea during 2011:An analysis using an optical plankton counter[J]. Regional Studies in Marine Science, 2018,20:34-44.
[28]
Rice E, Dam H G, Stewart G. Impact of climate change on estuarine zooplankton:Surface water warming in long island sound is associated with changes in copepod size and community structure[J]. Estuaries and Coasts, 2015,38(1):13-23.
[29]
Balazy K, Trudnowska E, Wichorowski M, et al. Large versus small zooplankton in relation to temperature in the Arctic shelf region[J]. Polar Research, 2018,37(1):1427409.
[30]
Mora J M, Escribano R, Schneider W. Community response of zooplankton to oceanographic changes (2002~2012) in the central/southern upwelling system of Chile[J]. Progress in Oceanography, 2016,142:17-29.
[31]
Atkinson D. Temperature and organism size:a biological law for ectotherms?[J]. Adv. Ecol. Res., 1994,25(6):1-58.
[32]
Jessica G, Thomas H, Ismar S M H, et al. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content[J]. Plos One, 2016,11(5):e0155952-.
[33]
刘耀谦.湛江钢铁自备电厂附近海域pH、水温与重金属和浮游动物群落的耦合关系[D]. 湛江:广东海洋大学, 2016. Liu Y Q. Study on the coupling relationship of pH, water temperature with both heavy metals and zooplankton community in sea area near Zhanjiang Baosteel Power Plant[D]. Zhanjiang:Guangdong Ocean University, 2016.
[34]
蔡泽富.温排水对象山港浮游生态系统的影响及其围隔实验研究[D]. 上海:上海海洋大学, 2011. Cai Z F. The study of affects of thermal effluent on pelagic ecosystem by mesocosm experiments in Xiang Shan Bay[D]. Shanghai:Shanhai Ocean University, 2011.
[35]
Yvon-Durocher G, Mon J M, Trimmer M, et al. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems[J]. Global Change Biology, 2011,17(4):1681-1694.
[36]
Marcolin C D R, Schultes S, Jackson G A, et al. Plankton and seston size spectra estimated by the LOPC and ZooScan in the Abrolhos Bank ecosystem (SE Atlantic)[J]. Continental Shelf Research, 2013, 70(11):74-87.
[37]
李沫,蔡泽平.核电站对海洋环境及生物的影响[J]. 海洋科学, 2001,25(9):32-35. Li M, Cai Z P. Effects of nuclear power plants on ocean environment and organisms:a review[J]. Marine Sciences, 2001,25(9):32-35.
[38]
徐晓群,曾江宁,曾淦宁,等.滨海电厂温排水对浮游动物分布的影响[J]. 生态学杂志, 2008,27(6):933-939. Xu X Q, Zeng J N, Zeng G N, et al. Effects of thermal water discharged from coastal power plant on distribution of zooplankton[J]. Chinese Journal of Ecology, 2008,27(6):933-939.
[39]
Jebakumar J P P, Nandhagopal G, Babu B R, et al. Impact of coastal power plant cooling system on planktonic diversity of a polluted creek system[J]. Marine Pollution Bulletin, 2018,133:378-391.
[40]
李亚红,周筝,赵小芳,等.大港发电厂温排水对附近海域浮游动物影响研究[J]. 环境保护科学, 2014,40(3):5-8. Li Y H, Zhou Z, Zhao X F, et al. Impact of thermal water discharge on zooplankton in the sea area near Dagang Power Plant[J]. Environmental Protection Science, 2014,40(3):5-8.
[41]
Tunowski J. Changes in zooplankton abundance and community structure in the cooling channel system of the Konin and Patnów power plants[J]. Archives of Polish Fisheries, 2009,17(4):279-289.
[42]
Tunowski J. Changes in zooplankton abundance and community structure in the cooling channel system of the Konin and Patnów power plants[J]. Archives of Polish Fisheries, 2009,17(4):279-289.
[43]
吴建新,阎斌伦,冯志华,等.田湾核电站海域浮游动物生态特征[J]. 生态学报, 2011,31(22):6902-6911. Wu J X, Yan B L, Feng Z H, et al. Zooplankton ecology near the Tianwan Nuclear Power Station[J]. Acta Ecologica Sinica, 2011, 31(22):6902-6911.
[44]
金腊华,黄报远,刘慧璇,等.湛江电厂对周围水域生态的影响分析[J]. 生态科学, 2003,22(2):165-167. Jin L H, Hang B Y, Liu H X, et al. Impact analysis of Zhanjiang Thermal Power Plant to aquatic ecosystem in Maxiehai canal[J]. Ecologic Science, 2003,22(2):165-167.