Abstract:Based on the Super-SBM and dynamic panel threshold model, this paper systematically measured the heterogeneous structure of green transformation in China's manufacturing industries, and also analyzed the impact of green transformation of manufacturing industry on its energy intensity from the perspective of environmental regulation. It was found that the green transformation of China's manufacturing industry had not been realized (the average value was -0.1637), and the degree of transformation differed significantly between industries. Furthermore, the transformation process presented obvious fluctuation characteristics among industries. Interestingly, there was a significant threshold effect of environmental regulation on the role of green transformation on energy intensity. A lower degree of environmental regulation was not found to be conducive to the reduction of energy intensity through green transformation of manufacturing industry. However, with the increasing intensity of environmental regulation to surpass the “critical value”, it was found that to a certain extent, the regulation could effectively enhance the effect of green transformation of manufacturing industry, namely, facilitating the reduction of energy intensity.
侯建, 常青山, 陈建成, 宋洪峰. 环境规制视角下制造业绿色转型对能源强度的影响[J]. 中国环境科学, 2020, 40(9): 4155-4166.
HOU Jian, CHANG Qing-shan, CHEN Jian-cheng, SONG Hong-feng. The impact of green transformation of manufacturing industry on energy intensity: The perspective of environmental regulation. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(9): 4155-4166.
Li H Z, Maria K S, Yan M Z, et al. "Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis,"[J]. Energy Policy, 2019,127:51-63.
[2]
Hou J, Wang J, Chen J, He, F. Does urban haze pollution inversely drive down the energy intensity? A perspective from environmental regulation[J]. Sustainable Development. 2020,28(1):343-351.
[3]
Hou J, Teo T S H, Zhou F, et al. Does industrial green transformation successfully facilitate a decrease in carbon intensity in China? An environmental regulation perspective[J]. Journal of Cleaner Production, 2018,184:1060-1071.
[4]
Ma B, Yu Y. Industrial structure, energy-saving regulations and energy intensity:Evidence from Chinese cities[J]. Journal of Cleaner Production, 2017,141:1539-1547.
[5]
Zhou X, Feng C. The impact of environmental regulation on fossil energy consumption in China:Direct and indirect effects[J]. Journal of Cleaner Production, 2017,142(4):3174-3183.
[6]
高志刚,尤济红.环境规制强度与中国全要素能源效率研究[J]. 经济社会体制比较, 2015,(6):111-123. Gao Z G, You J H. The intensity of environmental regulation and the total factor energy efficiency of China[J]. Comparative Economic & Social Systems, 2015,(6):111-123.
[7]
Wang X L, Shao Q L. Non-linear effects of heterogeneous environmental regulations on green growth in G20countries:Evidence from panel threshold regression[J]. Science of the Total Environment, 2019,660:1346-1354.
[8]
岳鸿飞,徐颖,吴璘.技术创新方式选择与中国工业绿色转型的实证分析[J]. 中国人口·资源与环境, 2017,27(12):199-209. Yue H F, Xu Y, Wu Z. Empirical analysis on the choice of technological innovation mode and green transformation of China's industry[J]. Chinese Population Resources and Environment, 2017,27(12):199-209.
[9]
朱东波,任力.环境规制、外商直接投资与中国工业绿色转型[J]. 国际贸易问题, 2017,(11):70-81. Zhu D B, Ren L. Environmental regulation, foreign direct investment and green transformation of China's industry[J]. International Trade Issues, 2017,(11):70-81.
[10]
彭星,李斌.不同类型环境规制下中国工业绿色转型问题研究[J]. 财经研究, 2016,42(7):134-144. Peng X, Li B. Research on green transformation of Chinese industry under different types of environmental regulations[J]. Financial Research, 2016,42(7):134-144.
[11]
Huang J B, Du D, Tao Q Z. An analysis of technological factors and energy intensity in China[J]. Energy Policy, 2017,109:1-9.
[12]
Bu M, Li S, Jiang L. Foreign direct investment and energy intensity in China:Firm-level evidence[J]. Energy Economics, 2019,80:336-376.
[13]
Fan M Q, Zheng H T. The impact of factor price changes and technological progress on the energy intensity of China's industries:Kalman filter-based econometric method[J]. Structural Change and Economic Dynamics, 2018,49:340-352.
[14]
张三峰,魏下海.信息与通信技术是否降低了企业能源消耗——来自中国制造业企业调查数据的证据[J]. 中国工业经济, 2019,(2):155-173. Zhang S F, Wei X H. Whether information and communication technology reduces enterprise energy consumption:evidence from survey data of Chinese manufacturing enterprises[J]. China Industrial Economy, 2019,(2):155-173.
[15]
吴琦,曾凡银.我国节能政策对能源强度影响的实证分析[J]. 统计与决策, 2014,(8):134-136. Wu Q, Zeng F Y. Empirical analysis of the impact of China's energy saving policies on energy intensity[J]. Statistics and Decision Making, 2014,(8):134-136.
[16]
Liu Y L, Li Z H, Yin X M. Environmental regulation, technological innovation and energy consumption——a cross-region analysis in China[J]. Journal of Cleaner Production, 2018,203:885-897.
[17]
Zhang X, Zhao X R, Jiang Z J, et al. How to achieve the 2030 CO2 emission-reduction targets for China's industrial sector:Retrospective decomposition and prospective trajectories[J]. Global Environmental Change, 2017,44:83-97.
[18]
Soni A, Mittal A, Kapshe M. Energy Intensity analysis of Indian manufacturing industries[J]. Resource-Efficient Technologies, 2017, 3(3):353-357.
[19]
李平.中国工业绿色转型研究[J]. 中国工业经济, 2011,(4):5-14. Li P. Research on green transformation of Chinese industry[J]. China Industrial Economy, 2011,(4):5-14.
[20]
彭星,李斌.贸易开放、FDI与中国工业绿色转型——基于动态面板门限模型的实证研究[J]. 国际贸易问题, 2015,(1):166-176. Peng X, Li B. Trade openness, FDI and green transformation of China's industry:An Empirical Study Based on dynamic panel threshold model[J]. International Trade Issues, 2015,(1):166-176.
[21]
李斌,彭星,欧阳铭珂.环境规制、绿色全要素生产率与中国工业发展方式转变——基于36个工业行业数据的实证研究[J]. 中国工业经济, 2013,(4):56-68. Li B, Peng X Ouyang Mingke. Environmental regulation, green total factor productivity and the transformation of China's industrial development mode:An Empirical Study Based on the data of 36 industrial sectors[J]. China Industrial Economy, 2013,(4):56-68.
[22]
Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001,130(3):498-509.
[23]
Tone K. A slacks-based measure of super-efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2002,143(1):32-41.
[24]
侯建,王刚,陈建成.外部知识源化、知识积累与中国工业绿色增长——动态异质门槛效应研究[J]. 科研管理, 2020,41(3):254-264. Hou J, Wang G, Chen J C. External knowledge source, knowledge accumulation and green growth of China's industry:dynamic heterogeneous threshold effect[J]. Scientific Research Management, 2020,41(3):254-264.
[25]
侯建,宋洪峰,李丽.非研发投入、知识积累与中国制造业绿色创新增长[J]. 系统管理学报, 2019,28(1):67-76. Hou J, Song H F, Li L. Non R & D investment, knowledge accumulation and green innovation growth of China's manufacturing industry[J]. Journal of Systems & Management, 2019,28(1):67-76.
[26]
肖滢,卢丽文.资源型城市工业绿色转型发展测度——基于全国108个资源型城市的面板数据分析[J]. 财经科学, 2019,(9):86-98. Xiao Y, Lu L W. Measurement of industrial green transformation development of Resource-based Cities——Based on the panel data analysis of 108 resource-based cities in China[J]. Financial Science, 2019,(9):86-98.
[27]
国家统计局工业统计司.中国工业统计年鉴2010~2016[M]. 北京:中国统计出版社, 2017. Department of Industrial Statistics, National Bureau of Statistics. China industrial statistics yearbook 2010~2016[M]. Beijing:China Statistics Press, 2017.
[28]
Lei J, Henk F, Minhe J, et al. Revisiting cross-province energy intensity convergence in China:A spatial panel analysis[J]. Energy Policy, 2018,121:252-263.
[29]
国家统计局能源统计司.中国能源统计年鉴2010~2016[M]. 北京:中国统计出版社, 2017. Department of Energy Statistics, National Bureau of Statistics. China energy statistics yearbook 2010~2016[M]. Beijing:China Statistics Press, 2017.
[30]
Hansen B E. Threshold effects in non-dynamic panels:Estimation, testing, and inference[J]. Journal of Econometrics, 1999,93(2):345-368.
[31]
Blundell R, Bond S. Initial conditions and moment restrictions in dynamic panel data models[J]. Economics Papers, 1998,87(1):115-143.
[32]
秦炳涛,葛力铭.中国高污染产业转移与整体环境污染——基于区域间相对环境规制门槛模型的实证[J]. 中国环境科学, 2019, 39(8):3572-3584. Qin B T, GeL M. Transfer of highly polluting industries and overall environmental pollution in China:An Empirical Study Based on Interregional relative environmental regulation threshold model[J]. China Environmental Science, 2019,39(8):3572-3584.
[33]
Hou J, Chen H, Xu J Z. External Knowledge Sourcing and Green Innovation Growth with Environmental and Energy Regulations:Evidence from Manufacturing in China[J]. Sustainability, 2017, 9(3):342.
[34]
彭星,李斌.全球价值链视角下中国嵌入制造环节的经济碳排放效应研究[J]. 财贸研究, 2013,24(6):18-26. Peng X, Li B. Research on the economic carbon emission effect of China's embedded manufacturing link from the perspective of global value chain[J]. Finance and Trade Research, 2013,24(6):18-26.
[35]
孙博文,傅鑫羽,任俊霖,等.环境规制的蓝色红利效应研究[J]. 中国环境科学, 2019,39(8):3518-3529. Sun B W, Fu X Y, Ren J L, et al. Study on the blue dividend effect of environmental regulation[J]. China Environmental Science, 2019,39(8):3518-3529.
[36]
Ambec S, Barla P. A theoretical foundation of the porter hypothesis[J]. Economics Letters, 2002,75(3):355-360.
[37]
Albortmorant G, LealMillán A, CepedaCarrión G. The antecedents of green innovation performance:A model of learning and capabilities[J]. Journal of Business Research, 2016,69(11):4912-4917.
[38]
Long N V. The Green Paradox in Open Economies:Lessons from Static and Dynamic Models[J]. Review of Environmental Economics and Policy, 2015,9(2):266-284.