Impact of temporal rainfall resolution on SWAT hydrological simulation
LU Yang1, TU Jun1,2, GAO Zheng-guo1, LI Xiao-gang1, YANG Shuai1, YANG Xiao-ying1,3
1. Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; 2. Shanghai Fudan Planning Architectural Design and Research Institute Co., Ltd., Shanghai 200433, China; 3. Nanjing Hydraulic Research Institute, Nanjing 210029, China
摘要 分别基于13个雨量站的日降雨量和小时降雨量,在率水流域建立SWAT(Soil and Water Assessment Tool)水文模型,对基于不同降雨时间分辨率的SWAT模型进行独立的参数率定和验证,在此基础上分析降雨时间分辨率对率水流域SWAT模拟性能的影响.结果表明,降雨输入的时间分辨率对率水流域SWAT模型的水文模拟性能有显著影响.小时降雨输入SWAT模型的纳什系数(NSE)和决定系数(R2)在率定期分别为0.89、0.90,在验证期分别为0.86、0.88,均显著高于日降雨输入SWAT模型对应的模型评价统计量值.究其原因,小时降雨输入SWAT模型对于峰值流量的模拟要明显优于日降雨输入SWAT模型.建议应在不同气候与自然环境条件的流域内开展类似的降雨时间分辨率对水文模型模拟性能的影响研究.
Abstract:Respectively based on the daily and hourly rainfall of 13rainfall stations, this paper has independently established, calibrated, and validated SWAT (Soil and Water Assessment Tool) models in the Shuaishui river basin. On the basis of this, the impact of temporal rainfall resolution on SWAT simulation performance in the Shuaishui river basin has been analyzed. Results have shown that the temporal resolution of rainfall input has a significant impact on the hydrological simulation performance of SWAT in the Shuaishui river basin. The Nash coefficient (NSE) and coefficient of determination (R2) of the SWAT model based on hourly rainfall are respectively 0.89and 0.90during calibration, and 0.86and 0.88during validation, which are all considerably higher than the corresponding model evaluation statistics of the SWAT model based on daily rainfall. This is mainly due to the significantly better performance of the SWAT model with hourly rainfall input in simulating peak flow than the SWAT model with daily rainfall input. It is suggested that similar study of the impact of temporal rainfall resolution on the simulation performance of hydrological models should be systematically carried out in watersheds with different climatic and environmental conditions.
鲁洋, 涂俊, 高震国, 李小港, 杨帅, 杨晓英. 降雨时间分辨率对SWAT水文模拟的影响[J]. 中国环境科学, 2020, 40(12): 5383-5390.
LU Yang, TU Jun, GAO Zheng-guo, LI Xiao-gang, YANG Shuai, YANG Xiao-ying. Impact of temporal rainfall resolution on SWAT hydrological simulation. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(12): 5383-5390.
Pragya P, Tawatchai T, Sangam S. Evaluation of soil and water assessment tool and artificial neural network models for hydrologic simulation in different climatic regions of Asia[J]. The Science of the Total Environment, 2020,701:1-12.
[2]
刘松,张利平,佘敦先,等.干旱半干旱地区流域水文模型的适用性[J]. 武汉大学学报(工学版), 2019,52(5):384-390. Liu S, Zhang L P, She D X, et al. Applicability of catchment hydrologic models in arid and semi-arid region[J]. Engineering Journal of Wuhan University, 2019,52(5):384-390.
[3]
陈丹,张冰,曾逸凡,等.基于SWAT模型的青山湖流域氮污染时空分布特征研究[J]. 中国环境科学, 2015,35(4):1216-1222. Chen D, Zhang B, Zeng Y F, et al. Analysis of temporal and spatial characteristics of nitrogen pollution in Qingshan Lake basin based on SWAT model[J]. China Environmental Science, 2015,35(4):1216-1222.
[4]
夏瑞,张远,杨辰,等.基于分布式水文模型的武夷山市水文调节服务评估[J]. 环境科学研究, 2019,32(6):1033-1042. Xia R, Zhang Y, Yang C, et al. Hydrological adjusting service function and value assessment in Wuyishan city based on distributed hydrological model[J]. Research of Environmental Sciences, 2019, 32(6):1033-1042.
[5]
徐帅帅,王雅莉,陈淑芬,等.基于分布式水文模型的"尼伯特"台风暴雨洪水反演[J]. 南水北调与水利科技, 2019,17(2):132-139. Xu S S, Wang Y L, Chen S F, et al. Characterization and simulation of Niebert typhoon rain and flood in Meixi river basin[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(2):132-139.
[6]
张汉辰,李致家,钟栗,等.CASC2D模型在半湿润半干旱地区的应用与研究[J]. 中国农村水利水电, 2015,(10):62-65. Zhang H C, Li Z J, Zhong Li, et al. The Application and Research of CASC2D Model in Semi-humid and Semi-arid Areas[J]. China Academic Journal Electronic Publishing House, 2015,(10):62-65.
[7]
马放,姜晓峰,王立,等.基于SWAT模型的阿什河流域非点源污染控制措施[J]. 中国环境科学, 2016,36(2):610-618. Ma F, Jiang X T, Wang L, et al. Non-point source pollution control of Ashihe basin based on SWAT model[J]. China Environmental Science, 2016,36(2):610-618.
[8]
Mhamed B, Abdellah E H, Khalid C, et al. Hydrological modeling of water and soil resources in the basin upstream of the Allal El Fassi dam (Upper Sebou watershed, Morocco)[J]. Modeling Earth Systems and Environment, 2019,5(4):1163-1177.
[9]
李鑫川,贺巧宁,张友静.SCS-CN模型的改进及其空间尺度效应[J]. 南水北调与水利科技, 2019,17(5):64-70,130. Li X C, He Q N, Zhang Y J. Improved SCS-CN model and its spatial scale effect analysis[J]. South-to-North Water Transfers and Water Science & Technology, 2019,17(5):64-70,130.
[10]
王婕,宋晓猛,张建云,等.中小尺度流域洪水模型模拟比较研究[J]. 中国农村水利水电, 2019,(7):72-76. Wang J, Song X M, Zhang J Y, et al. Flood simulation of the small and medium-sized river catchment by using multiple hydrological models[J]. China Academic Journal Electronic Publishing House, 2019,(7):72-76.
[11]
李静,焦树林,梁虹,等.基于MIKE SHE分布式水文模型的降水时间尺度对喀斯特流域径流模拟的影响研究——以红水河系六硐河流域为例[J]. 中国岩溶, 2012,31(4):388-394. Li J, Jiao S L, Liang H, et al. Research on the impact on runoff by time-scale of the precipitation in karst basin in view of MIKE SHE model:a case in Liudong river of the Hongshuihe system[J]. Carsologica Sinica, 2012,31(4):388-394.
[12]
王磊,孙文俊.基于DEM数据的HEC-HMS和Vflo降雨特征模拟对比研究——以北京密云区为例[J]. 环境科学学报, 2019,39(10):3559-3564. Wang L, Sun W J. Research on HEC-HMS and Vflo rainfall characteristics simulation and comparative based on DEM data:a case of Miyun district, Beijing[J]. Acta Scientiae Circumstantiae, 2019, 39(10):3559-3564.
[13]
肖楠,叶磊,吴剑,等.降雨对山丘区小流域洪峰模拟不确定性的影响[J]. 中国农村水利水电, 2018,(7):35-38,43. Xiao N, Ye L, Wu J, et al. The effect of rainfall variability on the uncertainty of the flood peak simulation in small mountainous watersheds[J]. China Academic Journal Electronic Publishing House, 2018,(7):35-38,43.
[14]
朱红雷,史晓亮,李英臣,等.基于SWAT模型的TRMM降水数据径流模拟适宜性评价[J]. 水土保持研究, 2017,24(5):105-112. Zhu H L, Shi X L, Li Y C, et al. Evaluation of runoff simulation using TRMM precipitation data based on SWAT model[J]. Research of Soil and Water Conservation, 2017,24(5):105-112.
[15]
胡胜,曹明明,邱海军,等.CFSR气象数据在流域水文模拟中的适用性评价——以灞河流域为例[J]. 地理学报, 2016,71(9):1571-1586. Hu S, Cao M M, Qiu H J, et al. Applicability evaluation of CFSR climate data for hydrologic simulation:a case study in the Bahe river basin[J]. Journal of Geographical Sciences, 2016,71(9):1571-1586.
[16]
Guendalina B, Ricardo R, Nick V, et al. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution[J]. Hydrology and Earth System Sciences, 2015,19(2):691-709.
[17]
Jaehak J, Kannan N, Jeff G A, et al. Development of sub-daily erosion and sediment transport algorithms for SWAT[J]. Transactions of the Asabe, 2011,54(5):1685-1691.
[18]
刘星,文小平,黎小东,等.降雨时间尺度对BTOPMC模型参数及洪水模拟的影响[J]. 水电能源科学, 2012,30(6):49-52. Liu X, Wen X P, Li X D, et al. Influence of time scale of precipitation on parameters of BTOPMC model and flood simulation[J]. Water Resources and Power, 2012,30(6):49-52.
[19]
Kannan N, White S M, Fred W, et al. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000[J]. Journal of Hydrology, 2006,332(3/4):456-466.
[20]
高超,刘青,苏布达,等.不同尺度和数据基础的水文模型适用性评估研究——淮河流域为例[J]. 自然资源学报, 2013,28(6):1765-1777. Gao C, Liu Q, Su B D, et al. The applicability assessment of hydrological models with different resolution and database in the Huaihe river basin, China[J]. Journal of Natural Resource, 2013,28(6):1765-1777.
[21]
周铮,吴剑锋,杨蕴,等.基于SWAT模型的北山水库流域地表径流模拟[J]. 南水北调与水利科技, 2020,18(1):66-73. Zhou Z, Wu J F, Yang Y, et al. Surface runoff simulation based on SWAT model in Beishan reservoir watershed[J]. South-to-North Water Transfers and Water Science & Technology, 2020,18(1):66-73.
[22]
Philip W G, Ali M S, Raghavan S. Applications of the SWAT model special section:overview and insights[J]. Journal of Environmental Quality, 2014,43(1):1-8.
[23]
何文英,毕孟飞,李泽利,等.新安江流域降雨量空间插值方法和参数筛选[J]. 水资源与水工程学报, 2013,24(1):130-134. He W Y, Bi M F, Li Z L, et al. Spatial interpolation method and parameters screening for precipitation in Xin¢anjiang river basin[J]. Journal of Water Resources & Water Engineering, 2013,24(1):130-134.
[24]
李文超,翟丽梅,刘宏斌,等.流域磷素面源污染产生与输移空间分异特征[J]. 中国环境科学, 2017,37(2):711-719. Li W C, Zhai L M, Liu H B, et al. Contrasting spatial distribution of the emission and export of phosphorus loss from a typical watershed in Yunnan plateau lakes area[J]. China Environmental Science, 2017, 37(2):711-719.
[25]
李丹,梁新强,吴嘉平.水库型饮用水源地水环境模拟与预测[J]. 浙江大学学报(农业与生命科学版), 2018,44(1):75-88. Li D, Liang X Q, Wu J P. Water pollution risk simulation and prediction in a drinking water catchment[J]. Journal of Zhejiang University (Agric. & Life Sci.), 2018,44(1):75-88.
[26]
Abbaspour K C, Vejdani M, Haghighat S. SWAT-CUP calibration and uncertainty programs for SWAT[A]//Oxley L, Kulasiri D. Land, water and environmental management:integrated systems for sustainability[C]. Modsim:International Congress on Modelling and Simulation, 2007:1603-1609.
[27]
Liang X Q, Wang Z B, Zhang Y X, et al. No-tillage effects on N and P exports across a rice-planted watershed[J]. Environmental Science and Pollution Research, 2016,23(9):8598-8609.
[28]
Arnold J G, Kiniry J R, Srinivasan R, et al. Soil and Water Assessment Tool input/output file documentation (version 2012)[R]. Austin, Texas:Texas Agricultural Experiment Station, College Station; Texas Commission on Environmental Quality, 2011.
[29]
Walter B, Droop O. Continuous simulation for design flood estimation-a review[J]. Environmental Modelling & Software, 2003, 18(4):309-318.
[30]
Mein R G, Courtney L L. Modeling infiltration during a steady rain[J]. Water Resources Research, 1973,9(2):384-394.