Load estimation and source apportionment of nitrogen, phosphorus and COD in the basin of Lake Baiyang
LI Yue-zhao1, CHEN Hai-yang1,2, SUN Wen-chao1,2
1. College of Water Sciences, Beijing Normal University, Beijing 100875, China; 2. Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
Abstract:The study estimates the pollution loads of nitrogen, phosphorus and COD from various point and non-point sources in the basin of Lake Baiyang using several tools including export coefficients model, PLOAD model and revise universal soil loss equation. The model parameters were collected from literature and by field surveys, and the sub-watershed, soil types and land use types were extracted based on the Digital Elevation Model (DEM) data using GIS tool. Results showed that the nitrogen load in the area was 31815.47t/a, and were mainly sourced from the agricultural field runoff (26.52%) and soil erosion (21.03%). Similarly, the soil erosion and agricultural field runoff were identified as the dominators for phosphorus load (3873.33t/a), with the contribution ratios of 30.78% and 25.80%, respectively. While for COD (110728.52t/a), livestock discharges (43.47%) and municipal domestic sewage (23.53%) were the main contributors. Overall, our analysis suggested the agricultural field runoff, livestock discharges, soil erosion and municipal domestic sewage were the main sources of nitrogen, phosphorus and COD in the basin of Lake Baiyang and should be addressed in future.
李悦昭, 陈海洋, 孙文超. 白洋淀流域氮、磷、COD负荷估算及来源解析[J]. 中国环境科学, 2021, 41(1): 366-376.
LI Yue-zhao, CHEN Hai-yang, SUN Wen-chao. Load estimation and source apportionment of nitrogen, phosphorus and COD in the basin of Lake Baiyang. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(1): 366-376.
Yang Y, Gao B, Hao H, et al. Nitrogen and phosphorus in sediments in China:A national-scale assessment and review[J]. Science of the Total Environment, 2017,576(15):840-849.
[2]
Bai X, Ding S, Fan C, et al. Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China[J]. Environmental Pollution, 2009,157(8/9):2507-2513.
[3]
Zhu Y, Wu F, He Z, et al. Characterization of organic phosphorus in lake sediments by sequential fractionation and enzymatic hydrolysis[J]. Environmental Science & Technology, 2013,47(14):7679-7687.
[4]
Maryna, Strokal, Carolien, et al. Nitrogen and phosphorus inputs to the Black Sea in 1970~2050[J]. Regional Environmental Change, 2013, 13(1):179-192.
[5]
Nürnberg G K, Tarvainen M, Ventel A M, et al. Internal phosphorus load estimation during biomanipulation in a large polymictic and mesotrophic lake[J]. Inland Waters, 2015,2(3):147-162.
[6]
Jeppesen E, Meerhoff M, Jacobsen B A, et al. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate[J]. Netherlands:Springer, 2007:269285.
[7]
Lewis W M, Wurtsbaugh W A, Paerl H W. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters[J]. Environmental Science & Technology, 2011,45(24):10300-10305.
[8]
Ji Z, Zhang Y, Zhang H, et al. Fraction spatial distributions and ecological risk assessment of heavy metals in the sediments of Baiyangdian Lake[J]. Ecotoxicology and Environmental Safety, 2019,174(6):417-428.
[9]
Wu F F, Wang, X. Eutrophication evaluation based on set pair analysis of Baiyangdian Lake, North China[J]. Procedia Environmental Sciences, 2012,13:1030-1036.
[10]
Li Y, Ma J, Yang Z, et al. Influence of non-point source pollution on water quality of Wetland Baiyangdian, China[J]. Desalination & Water Treatment, 2011,32(1):291-296.
[11]
Wang J, Yang Z, Pei Y, et al. Effects of nutrient concentrations and ratios on the eutrophication in a macrophyte-dominated lake[J]. Fresenius Environmental Bulletin, 2010,19(10):2185-2191.
[12]
Zhao Y, Xia X H, Yang Z F, et al. Temporal and spatial variations of nutrients in Baiyangdian Lake, North China[J]. Journal of Environmental Informatics, 2011,17(2):102-108.
[13]
Dong L M, Yang Z F, Liu X H. Factors affecting the internal loading of phosphorus from calcareous sediments of Baiyangdian Lake in North China[J]. Environmental Earth sciences, 2011,64(6):1617-1624.
[14]
杜奕衡,刘成,陈开宁,等.白洋淀沉积物氮磷赋存特征及其内源负荷[J]. 湖泊科学, 2018,30(6):1537-1551. Du Y H, Liu C, Chen K N, et al. Occurrence and internal loadings of nitrogen and phosphorus in the sediment of Lake Baiyangdian[J]. Joural of Lake Sciences, 2018,30(6):1537-1551.
[15]
Guo W, Pei Y, Yang Z, et al. Historical changes in polycyclic aromatic hydrocarbons (PAHs) input in Lake Baiyangdian related to regional socio-economic development[J]. Journal of Hazardous Materials, 2011,187(1-3):441-449.
[16]
高芬.白洋淀生态环境演变及预测[D]. 保定:河北农业大学, 2008. Gao F. Variation and prediction of the ecological environment of Baiyangdian wetland[D]. Baoding:Agricultural University of Hebei, 2008.
[17]
丁训静,姚琪,阮晓红.太湖流域污染负荷模型研究[J]. 水科学进展, 2003,(2):189-192. Ding X J, Yao Q, Ruan X H. Waste load model for the Taihu Basin[J]. Advances in Water Science, 2003,(2):189-192.
[18]
USEPA (The United States Environmental Protection Agency), 2001. Supplemental guidance for developing soil screening levels for superfund sites[R]. OSWER9355.4-24. Office of Solid Waste and Emergency Response. US Environmental Protection Agency. Washington, DC.
[19]
Johnes P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters:The export coefficient modelling approach[J]. Journal of Hydrology, 1996,183(4):323-349.
[20]
Jabbar M. Application of GIS to estimate soil erosion using RUSLE[J]. Geo-Spatial Information Science, 2003,6:34-37.
[21]
杨胜天,程红光,步青松,等.全国土壤侵蚀量估算及其在吸附态氮磷流失量匡算中的应用[J]. 环境科学学报, 2006,26(3):366-374. Yang S T, Cheng H G, Bu Q S, et al. Estimation of soil erosion and its application in assessment of the absorbed nitrogen and phosphorus load in China[J]. Acta Scientiae Circumstantiae, 2006,26(3):366-374.
[22]
胥彦玲,李怀恩,贾海娟,等.陕西省黑河流域水土流失型非点源污染估算[J]. 水土保持通报, 2005,(5):82-84. Xu Y L, Li H E, Jia H J, et al. Estimate the loss load of non-point source pollution by soil and water loss in Heihe basin of Shanxi Province[J]. Bulletin of Soil and Water Conservation, 2005,(5):82-84.
[23]
项翠云.海河中游非点源污染研究[D]. 天津:天津大学, 2017. Xiang C Y. Study on nonpoint source pollution of the middle area of the Haihe river[D]. Taijin:Taijin University, 2017.
[24]
邱斌,李萍萍,钟晨宇,等.海河流域农村非点源污染现状及空间特征分析[J]. 中国环境科学, 2012,32(3):564-570. Qiu B, Li P P, Zhong C Y et al. Characteristics and spatial distribution of the rural non-point source pollution in Haihe river basin[J]. China Environmental Science, 2012,32(3):564-570.
[25]
朱梅.海河流域农业非点源污染负荷估算与评价研究[D]. 北京:中国农业科学院, 2011. Zhu M. Study on agricultural NPS loads of Haihe basin and assessment on its environmental impact[D]. Beijing:Chinese Academy of Agricultural Sciences, 2011.
[26]
崔惠敏.农业面源污染对白洋淀流域水环境的影响分析[J]. 现代农业科技, 2011,(7):298-300. Cui H M. Analysis on effect of agricultural non-point source pollution on the water environment in Baiyangdian basin[J]. Modern Agricultural Science and Technology, 2011(7):298-300.
[27]
任玮,代超,郭怀成.基于改进输出系数模型的云南宝象河流域非点源污染负荷估算[J]. 中国环境科学, 2015,35(8):2400-2408. Ren W, Dai C, Guo H C. Estimation of pollution load from non-point source in Baoxianghe watershed based, Yunnan Province on improved export coefficient model[J]. China Environmental Science, 2015, 35(8):2400-2408.
[28]
Wischemier W H, Smith D D. Predicting rainfall erosion losses-a guide to conservation planning[M]. Washington DC, USDA:US Department of Agriculture, Science and Education Administration, Agricultural Handbook, 1978:537-539.
[29]
Williams J R, Renard K G, Dyke P T. EPIC:A new method for assessing erosion's effect on soil productivity[J]. Journal of Soil and Water Conservation, 1983,38(5):381-383.
[30]
陈海洋,滕彦国,王金生,等.晋江流域非点源氮磷负荷及污染源解析[J]. 农业工程学报, 2012,28(5):213-219. Chen H Y, Teng Y G, Wang J S, et al. Pollution load and source apportionment of non-point source nitrogen and phosphorus in Jinjiang River watershed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012,28(5):213-219.
[31]
蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000,(2):19-24. Cai C F, Ding S W, Shi Z H, et al. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. Journal of Soil and Water Conservation, 2000,(2):19-24.
[32]
吴磊.三峡库区典型区域氮、磷和农药非点源污染物随水文过程的迁移转化及其归趋研究[D]. 重庆:重庆大学, 2012. Wu L. Fate and transport of non-point source nitrogen, phosphorus and pesticide pollution in typical area of the Three Gorges Reservoir area[D]. Chongqing:Chongqing University, 2012.
[33]
李继承.嘉陵江流域非点源污染负荷模拟研究[D]. 重庆:重庆大学, 2007. L J C. Simulation of non-point source pollution load in Jialing river basin[D]. Chongqing:Chongqing University, 2007.
[34]
管玉玲.乌梁素海流域面源污染负荷入湖量计算[J]. 内蒙古科技与经济, 2020,(2):49-52. G Y L. Calculation of non-point source pollution load into the lake in Wuliangsuhai Basin[J]. Inner Mongolia Science Technology & Economy, 2020,(2):49-52.
[35]
冯爱萍,吴传庆,王雪蕾,等.海河流域氮磷面源污染空间特征遥感解析[J]. 中国环境科学, 2019,39(7):2999-3008. Feng A P, Wu C Q, Wang X L, et al. Spatial character analysis on nitrogen and phosphorus diffuse pollution in Haihe River Basin by remote sensing[J]. China Environmental Science, 2019,39(7):29993008.
[36]
陈海洋.河流水体污染源解析技术及方法研究[D]. 北京:北京师范大学, 2012. Chen H Y. Study on technical methods of source apportionment and identification for river aquatic environment[D]. Beijing:Beijing Normal University, 2012.