Parameterization scheme for dry aerosols complex refractive index
ZHANG Zhi-cha1, NI Chang-jian1, LIU Xin-chun2, LU Hui3, BAI Ai-juan1
1. College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China; 2. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China; 3. College of Resource and Environmental Science, Guangxi Normal University, Guilin 541004, China
Abstract:By utilizing the ground-based monitored data at an hourly time step recorded by WS600 integrated weather station, AURORA-3000 integrating nephelometer, AE-31aethalometer and GRIMM180 environment particle monitors from October to December in 2017 in Chengdu, the real part (nre) and imaginary part (ni) of dry aerosol complex refractive index (DACRI) at the wavelength of 550nm were retrieved by combining immune evolution algorithm with an improved Mie scattering theory algorithm. Stepwise linear regression method was then employed to respectively develop the new parameterization schemes by investigating the correlation between the retrieved DACRI and the ratios of particle mass concentration (BC/PM1, BC/PM2.5, BC/PM10, PM1/PM2.5, PM1/PM10, and PM2.5/PM10). The correlation coefficients (R) were respectively 0.54 and 0.85 (P<0.0001) between nre and ni of DACRI calculated by the parameterization schemes and the observations, and the corresponding mean relative errors (MRE) were respectively 2.31% and 15.18%. These parameterization schemes were further applied to the simulation of the dry aerosol scattering coefficient (bsp) and absorption coefficient (bap) during an evolution of haze. The results show that correlation coefficients were respectively 0.98 and 0.91 (P<0.0001) between the simulations and the observations, and that the corresponding mean relative errors were respectively 7.43% and 14.97%.
Coakley J R J A, Cess D, Yurevich F B. The effect of tropospheric aerosol on the earth's radiation budget:A parameterization for climate model[J]. Journal of Geophysical Research Atmosphere, 1983,40(1):116-138.
[2]
Twomey S. The influence of pollution on the shortwave albedo of clouds[J]. Journal of the Atmosphere Science, 1977,34:1149-1151.
[3]
Twomey S, Warner J. Comparison of measurements of cloud droplets and cloud nuclei[J]. Journal of the Atmosphere Science, 1967,24:702-703.
[4]
Chan Y C, Simpson R W, Mctainsh G H, et al. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques[J]. Atmospheric Environment, 1999,33(19):3237-3250.
[5]
Sloane C S. 1983. Optical properties of aerosols-comparison of measurements with model calculations. Atmospheric Environment, 17(2):409-416.
[6]
Wu Z, Zheng J, Wang Y, et al. Chemical and physical properties of biomass burning aerosols and their ccn activity:a case study in beijing, china[J]. Science of The Total Environment, 2016,579:1260-1268.
[7]
张泽宇,王甜甜,范萌等.北京地区基于化学组分的夏季气溶胶吸湿特性[J]. 中国环境科学, 2020,40(6):2353-2360.Zhang Z Y, Wang T T, Fan M, et al. An experimental study on aerosol hygroscopic properties during the summer in Beijing based on chemical composition[J]. China Environmental Science, 2020,40(6):2353-2360.
[8]
Petr Chýlek, Coakley Jr J A. Aerosols and climate[J]. Science, 1974,183(4120):75-77.
[9]
刘新罡,张远航.基于观测的大气气溶胶散射吸湿增长因子模型研究-以2006 CARE Beijing加强观测为例[J]. 中国环境科学, 2009, 29(12):1243-1248.Liu X G, Zhang Y H. Modelling research on the aerosol scattering hygroscopic growth factor based on measurement-Taking 2006CAREBeijing campaign for example[J]. China Environment Science, 2009,29(12):1243-1248.
[10]
Han Y, Daren L, Rao R, Wang Y. Determination of the complex refractive indices of aerosol from aerodynamic particle size spectrometer and integrating nephelometer measurements[J]. Applied Optics, 2009,48(21):4108-4117.
[11]
Moosmüller H, Sorensen C M. Small and large particle limits of single scattering albedo for homogeneous, spherical particles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 204:250-255.
[12]
Louie P K K, Chow J C, Chen L W A. et al. PM2.5 chemical composition in hong kong:urban and regional variations[J]. Science of the Total Environment, 2005,338(3):267-281.
[13]
姚青,蔡子颖,韩素芹,等.天津冬季相对湿度对气溶胶浓度谱分布和大气能见度的影响[J]. 中国环境科学, 2014,34(3):596-603.Yao Q, Cai Z Y, Han S Q, et al. Effects of relative humidity on the aerosol size distribution and visibility in the winter in Tianjin[J]. China Environmental Science, 2014,34(3):596-603.
[14]
Ferrero L, Mocnik G, Ferrini B S, et al. Vertical profiles of aerosol absorption coefficient from micro-aethalometer data and mie calculation over milan[J]. Science of the Total Environment, 2011, (14):2824-2837.
[15]
Yamamoto G, Tanaka M. Increase of global albedo due to air pollution[J]. Journal of the Atmospheric Sciences, 1972,29(8):1405-1412.
[16]
Ebert M, Weinbruch S, Rausch A, et al. The complex refractive index of aerosols during LACE 98as derived from the analysis of individual particles[J]. Journal of Geophysical Research:Atmospheres, 2001, 107(D21):LAC 3.
[17]
Wex H, Neusüß C, Wendisch M, et al. Particle scattering, backscattering, and absorption coefficients:An in situ closure and sensitivity study[J]. Journal of Geophysical Research:Atmospheres, 2002,107(D21):LAC 4.
[18]
Cheng Y F, Eichler H, Wiedensohler A, et al. Mixing state of elemental carbon and non-light-absorbing aerosol components derived from in situ particle optical properties at Xinken in Pearl River Delta of China[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D20):D20204.
[19]
Adams K M, Davis Jr L I, Japar S M, et al. Real-time, in situ measurements of atmospheric optical absorption in the visible via photoacoustic spectroscopy-IV. Visibility degradation and aerosol optical properties in Los Angeles[J]. Atmospheric Environment. Part A. General Topics, 1990,24(3):605-610.
[20]
Arnott W P, Moosmüller H, Sheridan P J, et al. Photoacoustic and filter-based ambient aerosol light absorption measurements[J]:Instrument comparisons and the role of relative humidity. Journal of Geophysical Research:Atmospheres, 2003,108(D1),AAC-15.
[21]
Lin C I, Baker M, Charlson R J, Absorption coefficient of atmospheric aerosol:a method for measurement[J]. Applied Optics, 1973,12(6):1356-1363.
[22]
Wendisch M, Hoyningen H V W. Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements[J]. Atmospheric Environment, 1994,28(5):785-792.
[23]
Sumlin B J, Heinson W R, Chakrabarty R K. Retrieving the aerosol complex refractive index using pymiescatt:A mie computational package with visualization capabilities[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017,S00224073(17):30583-6.
[24]
Herbin H, Pujol O, Hubert P, et al. New approach for the determination of aerosol refractive indices-Part I:Theoretical bases and numerical methodology[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017,S00224073(16):30522-2.
[25]
Bohren C F, Huffman D R. Absorption and scattering of light by small particles (Bohren/Absorption)[M]. Measured Optical Properties, 1998:268-283.
[26]
Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen[J]. Annalen Der Physik, 2006,330(3):377-445.
[27]
张智察,倪长健,邓也,等.气溶胶等效复折射率反演的免疫进化算法[J]. 中国环境科学, 2019,39(2):108-113.Zhang Z C, Ni C J, Deng Y, et al. Retrieval of equivalent complex refractive index of aerosol particle based on immune evolution algorithm[J]. China Environment Science, 2019,39(2):108-113.
[28]
Liu L, Wang H, Yu B, et al. Improved algorithm of light scattering by a coated sphere[J]. China Particuology, 2007,5(3):230-236.
[29]
Wen X, Song A. An immune evolutionary algorithm for sphericity error evaluation[J]. International Journal of Machine Tools & Manufacture, 2004,44(10):1077-1084.
[30]
杨寅山,倪长健,邓也,等.成都市冬季大气消光系数及其组成的特征研究[J]. 环境科学学报, 2019,39(5):1425-1432.Yang Y S, Ni C J, Deng Y, et al. Characteristics of atmospheric extinction coefficient and its components in winter in Chengdu[J]. Acta Scientiae Circumstantiae, 2019,39(5):1425-1432.
[31]
张智察,倪长健,汤津赢,等."干"气溶胶等效复折射率与其质量浓度指标的相关性研究[J]. 光学学报, 2019,39(5):0501002.Zhang Z C, Ni C J, Tang J Y, et al. Correlation between equivalent complex refraction index of "dry" aerosol and its mass concentration index[J]. Acta Optica Sinica, 2019,39(5):0501002.
[32]
杨寅山,倪长健,张智察,等.成都冬季"干"气溶胶等效复折射率变化特征研究[J]. 中国环境科学, 2019,39(10):4093-4099.Yang Y S, Ni C J, Zhang Z C, et al. Characteristics of "dry" aerosol equivalent complex refraction index in winter in Chengdu[J]. China Environmental Science, 2019,39(10):4093-4099.
[33]
张智察,倪长健,邓也,等.免疫进化算法反演均匀混合气溶胶吸湿增长因子[J]. 中国环境科学, 2020,40(3):1008-1015.Zhang Z C, Ni C J, Deng Y, et al. Retrieval of hygroscopic growth factorof uniformly mixedaerosol particles based on immune evolution algorithm[J]. China Environmental Science, 2020,40(3):1008-1015.
[34]
Wu Y F, Zhang R J, Pu Y F, et al. Aerosol optical properties observed at a semi-arid rural Site in northeastern China[J]. Aerosol and Air Quality Research, 2012,12(4):503-514.
[35]
Anderson T L, Ogren J A. Determining aerosol radiative properties using the TSI 3563integrating nephelometer[J]. Aerosol Science and Technology, 1998,29(1):57-69.
[36]
Bodhaine B A. Aerosol absorption measurements at Barrow, Mauna Loa and the south pole[J]. Journal of Geophysical Research, 1995, 100(D5):8967-8975.
[37]
李梅芳,叶芝祥.基于太阳光度计的成都双流地区夏季气溶胶光学特性研究[J]. 成都信息工程学院学报, 2014,29(2):213-216.Li M F, Ye Z X. The studies of aerosol optical properties of Chengdu Shuangliu in summer based on the sun photometer[J]. Journal of Chengdu University of Information Technology, 2014,29(2):213-216.
[38]
吴兑,毛节泰,邓雪娇,等.珠江三角洲黑碳气溶胶及其辐射特性的观测研究[J]. 中国科学:地球科学, 2009,(11):1542-1553.Wu D, Mao J T, Deng X J, et al. Black carbon aerosols and their radiative properties in the Pearl River Delta region[J]. Science in China (Series D:Earth Sciences), 2009,(11):1542-1553.
[39]
Yan P, Tang J, Huang J, et al. The measurement of aerosol optical properties at a rural site in Northern China[J]. Atmospheric Chemistry and Physics, 2008,8(8):2229-2242.
[40]
Bandowe B A M. Meusel H. Huang R J. PM2.5-bound oxygenated pahs, nitro-pahs and parent-pahs from the atmosphere of a chinese megacity:seasonal variation, sources and cancer risk assessment[J]. Science of The Total Environment, 2014,473-474:77-87.
[41]
孙逸飞,李孟林,江家豪,等.深圳大气PM2.5中水溶性有机物的来源特征[J]. 中国环境科学, 2020,40(5):1869-1876.Sun Y F, Li M L, Jiang J H, et al. Source apportionment of water-soluble organic matter in PM2.5 in Shenzhen[J]. China Environment Science, 2020,40(5):1869-1876.
[42]
徐宏辉,徐婧莎,何俊,等.浙北地区PM2.5中多环芳烃特征[J]. 中国环境科学, 2018,38(9):3247-3253.Xu H H, Xu J S, He J, et al. Characteristics analyses of PAHs in PM2.5 in the northern Zhejiang province[J]. China Environment Science, 2018,38(9):3247-3253.
[43]
曹宁,黄学敏,祝颖,等.西安冬季重污染过程PM2.5理化特征及来源解析[J]. 中国环境科学, 2019,39(1):32-39.Cao N, Huang X M, Zhu Y, et al. Pollution characteristics and source apportionment of fine particles during a heavy pollution in winter in Xi'an City[J]. China Environment Science, 2019,39(1):32-39.
[44]
Tu J, Xia Z G, Wang H S, et al. Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China[J]. Atmospheric Research, 2007,85(3/4):310-337.
[45]
Jennings S G, Pinnick R G, Auvermann H J. Effects of particulate complex refractive index and particle size distribution variations on atmospheric extinction and absorption for visible through middle ir wavelengths[J]. Applied Optics, 1978,17(24):3922-3929.