Emission improvements of reactive VOCs based on satellite observations and their impact on ozone simulations
WANG Feng1, WANG Jian-wei1, ZHAI Jing2, HOU Can2
1. Anhui Institute of Environmental Science and Technology Co., Ltd, Hefei 230031, China; 2. Anhui Institute of Meteorological Science, Hefei 230031, China
摘要 本文以INTEX-B (Intercontinental Chemical Transport Experiment-Phase B)人为源、FINNv1(Fire Inventory from NCAR version 1)生物质燃烧源、MEGAN (Model of Emissions of Gases and Aerosols from Nature)生物源作为基准源,用2005~2007年3a的OMI观测资料作为参考,使用WRF-chem模式,建立了卫星观测数据与地面排放VOCs源数据的回归方程,通过OMI观测资料的约束,人为源在目前污染最为严重的京津冀、长三角、珠三角3个城市群区域分别增加了1.51倍、1.87倍和1.93倍,生物质燃烧源在3个区域分别增加了12.2倍、6.15倍和2.27倍,生物源在3个区域分别增加了1.66、1.31和1.21倍,增加后的浓度分布与前人研究结论有较好的一致性.使用改进后的源清单模拟结果来看,不同季节,3个区域O3浓度均有不同幅度的增加,各季节增幅较大的区域均主要集中在京津冀、长三角和珠三角中心城市及周边区域,与我国大型城市区基本都是VOCs敏感区的结论一致.整体而言,VOCs源强改进后,NOx敏感区O3浓度增加幅度不大,不超过4×10-9,而部分VOCs敏感区增幅超过20×10-9.本文所提供的方法可进一步改进后在大气污染相关研究中,特别是模式源清单研究中广泛使用.
Abstract:Introduced is a methodology of improving bottom-up volatile organic compound (VOC) emissions by using space-based formaldehyde measurements. The regression equation between satellite observations and pollutant emissions was established which used the bottom-up emission inventories of INTEX-B for anthropogenic VOCs, FINNv1for the biomass burning source, and MEGAN for the biogenic source. The anthropogenic emissions were enhanced by 1.51, 1.87, and 1.93 times in the Beijing-Tianjin-Hebei region, the Yangtze River Delta, and the Pearl River Delta, respectively, whereas the biomass burning emissions were enhanced by 12.2, 6.15, and 2.27 times, and the biogenic emissions were enhanced by 1.66, 1.31, and 1.21 times, respectively, as constrainted by a continuous 3-year record (2005~2007) of OMI satellite measurements. The improved emissions are in good agreement with previous results. Using the improved emission inventories, O3 simulations with the WRF Chem model were conducted, showing that simulated O3 was increased in different seasons in the above three regions, with large increases (more than 20×10-9) in major cities and surrounding areas of the three regions in each season, consistent with the VOC-sensitive urban areas in China. The methodology presented in this paper can be further improved and widely used in air pollution research, especially in the improvement of emission inventories.
王峰, 汪健伟, 翟菁, 侯灿. 卫星观测资料改进活性VOCs源排放及其对臭氧模拟影响[J]. 中国环境科学, 2021, 41(6): 2504-2514.
WANG Feng, WANG Jian-wei, ZHAI Jing, HOU Can. Emission improvements of reactive VOCs based on satellite observations and their impact on ozone simulations. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(6): 2504-2514.
王跃思,李文杰,高文康,等.2013~2017年中国重点区域颗粒物质量浓度和化学成分变化趋势[J]. 中国科学:地球科学, 2020,50(4):453-468. Wang Y, Li W, Gao W, et al. Trends in particulate matter and its chemical compositions in China from 2013~2017[J]. Science China Earth Sciences, 2020,50(4):453-468.
[2]
Wang Y, Gao W, Wang S, et al. Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017[J]. National Science Review, 2020,7(8):1331-1339.
[3]
孙金金,黄琳,龚康佳,等.2014~2019年北京和南京地区PM2.5和臭氧浓度相关性研究[J]. 南京信息工程大学学报(自然科学版), 2020,6:1-14. Sun J J, Huang L, Gong K J, et al. An analysis on the correlation between PM2.5 and ozone concentration during 2014~2019 in Beijing and Nanjing.[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020,6:1-14.
[4]
Feng Y Y, Ning M, Lei Y, et al. Defending blue sky in China:Effectiveness of the "Air Pollution Prevention and Control Action Plan" on air quality improvements from 2013 to 2017[J]. Journal of Environmental Management, 2019,252:109603.
[5]
Zheng B, Tong D, Li M, et al. Trends in China's anthropogenic emissions since 2010as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics, 2018,18:14095-14111.
[6]
唐孝炎,张远航,邵敏.大气环境化学[M]. 北京:高等教育出版社, 2006:70-80. Tang X Y, Zhang Y H, Shao M. Atmospheric environmental chemistry[M]. Beijing:Higher Education Press, 2006:70-80.
[7]
Hatfield M, K.E. Hartz H. Secondary organic aerosol from biogenic volatile organic compound mixtures[J]. Atmospheric Environment, 2011,45(13):2211-2219.
[8]
Wu W, Zhao B, Wang S, et al. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China[J]. Journal of Environmental Sciences, 2017,53:224-237.
[9]
王川,夏士勇,曹礼明,等.深圳西部城区大气O3污染特征及超标成因[J]. 中国环境科学, 2020,40(4):1414-1420. Wang C, Xia S Y, Cao L M, et al. Study on the characteristics and the cause of atmospheric O3 pollution in western urban of Shenzhen[J]. China Environmental Science, 2020,40(4):1414-1420.
[10]
司雷霆,王浩,李洋,等.太原市夏季大气VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 2019,39(9):3655-3662. Si L T, Wang H, Li Y, et al. Pollution characteristics and ozone formation potential of ambient VOCs in summer in Taiyuan[J]. ChinaEnvironmentalScience, 2019,39(9):3655-3662.
[11]
Li Y, Yin S, Yu S, et al. Characteristics of ozone pollution and the sensitivity to precursors during early summer in central plain, China[J]. Journal of Environmental Sciences, 2021,99:354-368.
[12]
张瑞旭,刘焕武,邓顺熙,等.宝鸡市秋冬季大气VOCs浓度特征及其O3和SOA生成潜势[J]. 中国环境科学, 2020,40(3):983-996. Zhang R X, Liu H W, Deng S X, et al. Characteristics of VOCs and formation potential of O3 and SOA in autumn and winter in Baoji, China[J]. China Environmental Science, 2020,40(3):983-996.
[13]
Carmichael G R, Tang Y, Kurata G, et al. Evaluating regional emission estimates using the TRACE-P observations[J]. J. Geophys. Res., 2003,108(D21):8810.
[14]
Fu T M, Jacob D J, Palmer P I, et al. Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone[J]. J. Geophys. Res., 2007,112(D6):D06312.
[15]
Zhao Y, Nielsen CP, Lei Y, et al. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China[J]. Atmos. Chem. Phys., 2011,11(5):2295-2308.
[16]
Streets D G, Bond T C, Carmichael G R, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000[J]. J. Geophys. Res., 2003,108(D21):8809.
[17]
Wei W, Wang S, Chatani S, et al. Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China[J]. Atmospheric Environment, 2008,42(20):4976-4988.
[18]
Zhang Q, Streets D G, Carmichael G R, et al. Asian emissions in 2006 for the NASA INTEX-B mission[J]. Atmos. Chem. Phys., 2009,9(14):5131-5153.
[19]
Li M, Zhang Q, Kurokawa J I, et al. MIX:a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP[J]. Atmos. Chem. Phys., 2017,17(2):935-963.
[20]
Hogrefe C, Isukapalli S S, Tang X, et al. Impact of Biogenic Emission Uncertainties on the Simulated Response of Ozone and Fine Particulate Matter to Anthropogenic Emission Reductions[J]. Journal of the Air & Waste Management Association, 2011,61(1):92-108.
[21]
Roselle S J. Effects of biogenic emission uncertainties on regional photochemical modeling of control strategies[J]. Atmospheric Environment, 1994,28(10):1757-1772.
[22]
Wang F, An J, Li Y, et al. Impacts of uncertainty in AVOC emissions on the summer ROx budget and ozone production rate in the three most rapidly-developing economic growth regions of China[J]. Advances in Atmospheric Sciences, 2014,31(6):1331-1342.
[23]
Palmer P I, Jacob D J, Fiore A M, et al. Mapping isoprene emissions over North America using formaldehyde column observations from space[J]. J. Geophys. Res., 2003,108(D6):4180.
[24]
Abbot D S, Palmer P I, Martin R V, et al. Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space[J]. Geophys. Res. Lett., 2003,30(17):1886.
[25]
Millet D B, Jacob D J, Turquety S, et al. Formaldehyde distribution over North America:Implications for satellite retrievals of formaldehyde columns and isoprene emission[J]. J. Geophys. Res., 2006,111(D24):D24S02.
[26]
Palmer P I, Abbot D S, Fu T M, et al. Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column[J]. J. Geophys. Res., 2006,111(D12):D12315.
[27]
De Smedt I, Müller J F, Stavrakou T, et al. Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors[J]. Atmos. Chem. Phys., 2008,8(16):4947-4963.
[28]
De Smedt I, Stavrakou J, Müller J F, et al. First scientific results and progress towards the development of an operational product[Z]. Proceedings of the Eutmetsat Conference, 2009.
[29]
Jones N B, Riedel K, Allan W, et al. Long-term tropospheric formaldehyde concentrations deduced from ground-based fourier transform solar infrared measurements[J]. Atmos. Chem. Phys., 2009, 9(18):7131-7142.
[30]
Stavrakou T, Müller J F, De Smedt I, et al. Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns[J]. Atmos. Chem. Phys., 2009, 9(3):1037-1060.
[31]
Hewitt C N, Lee J D, MacKenzie A R, et al. Overview:oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3project):introduction, rationale, location characteristics and tools[J]. Atmos. Chem. Phys., 2010,10(1):169-199.
[32]
Lerot C, Stavrakou T, De Smedt I, et al. Glyoxal vertical columns from GOME-2backscattered light measurements and comparisons with a global model[J]. Atmos. Chem. Phys., 2010,10(24):12059-12072.
[33]
Barkley M P, De Smedt I, Van Roozendael M, et al. Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns[J]. Journal of Geophysical Research-Atmospheres, 2013,118(12):6849-6868.
[34]
Gonzi S, Palmer P I, Barkley M P, et al. Biomass burning emission estimates inferred from satellite column measurements of HCHO:Sensitivity to co-emitted aerosol and injection height[J]. Geophysical Research Letters, 2011,38:L14807.
[35]
Hewson W, Boesch H, Barkley M P, et al. Characterisation of GOME-2formaldehyde retrieval sensitivity[J]. Atmospheric Measurement Techniques, 2013,6(2):371-386.
[36]
Li Y, An J, Min M, et al. Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei Province of China[J]. Atmospheric Environment, 2011,45(27):4735-4744.
[37]
Wiedinmyer C, Akagi S, Yokelson R, et al. The Fire INventory from NCAR (FINN):A high resolution global model to estimate the emissions from open burning[J]. Geoscientific Model Development, 2011,4(3):625-641.
[38]
Guenther A, Karl T, Harley P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)[J]. Atmos. Chem. Phys., 2006,6(11):3181-3210.
[39]
Grell G A, Peckham S E, Schmitz R, et al. Fully coupled "online" chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39(37):6957-6975.
[40]
Zaveri R APeters L K. A new lumped structure photochemical mechanism for large-scale applications[J]. Journal of Geophysical Research, 1999,104(D23):30387-30415.
[41]
Fast J D, Gustafson W I Jr, Easter R C, et al. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model[J]. J. Geophys. Res., 2006,111(D21).
[42]
Emmons L K, Walters S, Hess P G, et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4(MOZART-4)[J]. Geosci. Model Dev., 2010,3(1):43-67.
[43]
Cao G L, Zhang X Y, Gong S L, et al. Emission inventories of primary particles and pollutant gases for China[J]. Chinese Science Bulletin, 2011,56(8):781-788.
[44]
Huang C, Chen C H, Li L, et al. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China[J]. Atmos. Chem. Phys., 2011,11(9):4105-4120.
[45]
Wang M, Shao M, Chen W, et al. A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China[J]. Atmos. Chem. Phys., 2014,14(12):5871-5891.
[46]
Liu Z, Wang Y, Vrekoussis M, et al. Exploring the missing source of glyoxal (CHOCHO) over China[J]. Geophysical Research Letters, 2012,39(10):L10812.
[47]
Martin M V, Heald C L, Ford B, et al. A decadal satellite analysis of the origins and impacts of smoke in Colorado[J]. Atmospheric Chemistry and Physics, 2013,13(15):7429-7439.
[48]
Im U, Daskalakis N, Markakis K, et al. Simulated air quality and pollutant budgets over Europe in 2008[J]. Science of the Total Environment, 2014,470:270-281.
[49]
Kumar R, Barth M C, Pfister G G, et al. WRF-Chem simulations of a typical pre-monsoon dust storm in northern India:influences on aerosol optical properties and radiation budget[J]. Atmospheric Chemistry and Physics, 2014,14(5):2431-2446.
[50]
Lapina K, Henze D K, Milford J B, et al. Assessment of source contributions to seasonal vegetative exposure to ozone in the US[J]. Journal of Geophysical Research-Atmospheres, 2014,119(1):324-340.
[51]
Larkin N K, Raffuse S MStrand T M. Wildland fire emissions, carbon, and climate:US emissions inventories[J]. Forest Ecology and Management, 2014,317:61-69.
[52]
Park M E, Song C H, Park R S, et al. New approach to monitor transboundary particulate pollution over Northeast Asia[J]. Atmospheric Chemistry and Physics, 2014,14(2):659-674.
[53]
杨文夷,李杰,陈焕盛,等.东亚边界层臭氧时空分布的数值模拟研究[J]. 中国环境科学, 2014,34(7):1633-1641. Yang W Y, Li J, Chen H S, et al. Modeling analysis of boundary layer ozone distributions over East Asia[J]. China Environmental Science, 2014,(7):1633-1641.
[54]
宗雪梅,王庚辰,陈洪滨,等.北京地区边界层大气臭氧浓度变化特征分析[J]. 环境科学, 2007,28(11):2615-2619. Zong X M, Wang G C, Chen H B, et al. Analysis on concentration variety characteristics of atmospheric ozone under the boundary layer in Beijing[J]. Environment Science, 2007,28(11):2615-2619.
[55]
刘洁,张小玲,张晓春,等.上甸子本底站地面臭氧变化特征及影响因素[J]. 环境科学研究, 2006,19(4):19-25. Liu J, Zhang X L, Zhang X C, et al. Surface ozone characteristics and the correlated factors at Shangdianzi atmospheric background monitoring station[J]. Research of Environmental Science, 2006,(4):19-25.
[56]
Qu Y, An J, Li J. Synergistic impacts of anthropogenic and biogenic emissions on summer surface O-3 in East Asia[J]. Journal of Environmental Sciences-China, 2013,25(3):520-530.
[57]
Shao M, Lu S, Liu Y, et al. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation[J]. Journal of Geophysical Research:Atmospheres, 2009,114(D2):D00G06.
[58]
Lu K, Zhang Y, Su H, et al. Oxidant (O3 + NO2) production processes and formation regimes in Beijing[J]. Journal of Geophysical Research:Atmospheres, 2010,115(D7):D07303.