Temporal and spatial distribution characteristics of net nitrogen and phosphorus input from human activity: A case study of Hangzhou section of Qiandao Lake Basin
1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; 2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Research and Hydropower Research, Beijing 100048, China; 3. School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an 710048, China
Abstract:To explore the impact of human activities on the input of nitrogen and phosphorus in the Hangzhou section of the Qiandao Lake Basin from 2008 to 2017, the temporal and spatial distribution of nitrogen and phosphorus input and their associated driving factors were analyzed based on the net nitrogen and phosphorus input model of human activities (NANI、NAPI). The results showed that: (1) NANI showed an upward trend with the annual ten-year average value of 2230kg/(km2·a) while NAPI increased firstly and then continued to decrease with the peak value in 2011. The spatial differences of each sub-unit are highly significant. Generally NANI and NAPI were high in the south and west, but low in the north and east. (2) The main input components of NANI had significant inter-annual differences. The largest contributing source of total net nitrogen input was nitrogen fertilizer application (37.3% to 39.9%) from 2008 to 2014, but turned into the atmosphere Nitrogen deposition (36.4% to 38.4%) from 2015 to 2017. In contrast, the main input components of NAPI were relatively consistent across the years. The largest contribution source was the input of phosphorus in human food and animal feed (44.1% to 48.1%), followed by phosphate fertilizer application (40.3% to 43.4%). (3) Among the impact factors, the crop planting intensity was the most significant factor influencing NANI (R2=0.851) and NAPI (R2=0.806). (4) The sub-units NANI and NAPI were significantly related to the load intensity of TN and TP into the lake. Variations in NANI explained 63.9% of the river TN load changes. Meanwhile, variations in NAPI explained 73.3% of the river TP load changes. Therefore, the actual management and control of non-point source pollution in Hangzhou Section of Qiandao Lake Basin should focus on towns, such as Fenkou Town, Weiping Town and Langchuan Township which possessed high NANI、NAPI. In these towns, we should strengthen the prevention and control of nitrogen and phosphorus fertilizer pollution and implement pollution source control and emission reduction strategies.
缪今典, 张晓明, 魏天兴, 赵阳, 李鹏, 周立刚. 千岛湖流域杭州段人类活动净氮、净磷输入时空分布[J]. 中国环境科学, 2021, 41(6): 2831-2842.
MIAO Jin-dian, ZHANG Xiao-ming, WEI Tian-xing, ZHAO Yang, LI Peng, ZHOU Li-gang. Temporal and spatial distribution characteristics of net nitrogen and phosphorus input from human activity: A case study of Hangzhou section of Qiandao Lake Basin. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(6): 2831-2842.
夏新华,曹飞凤,苏丹阳.千岛湖流域水环境与生态保护对策研究[J]. 农机化研究, 2008,(11):193-196. Xia X H, Cao F F, Su D Y. Study on countermeasures of water environment and ecological environment protection in the Qiandao Lake[J]. Agricultural Mechanization Research, 2008,(11):193-196.
[2]
文军,骆东奇,罗献宝,等.千岛湖区域农业面源污染及其控制对策[J]. 水土保持学报, 2004,18(3):126-129. Wen J, Luo D Q, Luo X B, et al. Agriculture non-point source pollution and control measures of Qiandao Lake Area[J]. Journal of Soil and Water Conservation, 2004,18(3):126-129.
[3]
Howarth R, Chan F, Conley D J, et al. Coupled biogeochemical cycles:Eutrophication and hypoxia in temperate estuaries and coastal marineecosystems[J]. Frontiers in Ecology and the Environment, 2011,9(1):18-26.
[4]
Howarth R W. Coastal nitrogen pollution:A review of sources and trends globally and regionally[J]. Harmful Algae, 2008,8(1):14-20.
[5]
Howarth R W, Billen G, Swaney D, et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean:Natural and human influences[J]. Biogeochemistry, 1996, 35(1):75-139.
[6]
Alber S M. Temporal and spatial trends in nitrogen and phosphorus inputs to the watershed of the Altamaha River, Georgia, USA[J]. Biogeochemistry, 2007,86(3):231-249.
[7]
Boyer E W, Goodale C L, Jaworski N A, et al. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U. S. A.[J]. Biogeochemistry, 2002,57-58(1):137-169.
[8]
Hong B, Swaney D P, Howarth R W. A toolbox for calculating net anthropogenic nitrogen inputs (NANI)[J]. Environmental Modelling & Software, 2011,26(5):623-633.
[9]
Scavia D, Field J C, Boesch D F, et al. Climate change impacts on U. S. Coastal and Marine Ecosystems[J]. Estuaries, 2002,25(2):149-164.
[10]
韩玉国,李叙勇,南哲,等.北京地区2003~2007年人类活动氮累积状况研究[J]. 环境科学, 2011,32(6):1537-1545. Han Y G, Li X Y, Nan Z, et al. Net anthropogenic nitrogen accumulation in the Beijing metropolitan region in 2003 to 2007[J]. Environment Science, 2011,32(6):1537-1545.
[11]
Swaney D P, Hong B, Ti C, et al. Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters:a brief overview[J]. Current Opinion in Environmental Sustainability, 2012,4(2):203-211.
[12]
Russell M J, Weller D E, Jordan T E, et al. Net anthropogenic phosphorus inputs:spatial and temporal variability in the Chesapeake Bay region[J]. Biogeochemistry, 2008,88(3):285-304.
[13]
Billen G, Silvestre M, Grizzetti B, et al. Nitrogen flows from European regional watersheds to coastal marine waters[M]. London:Cambridge University Press, 2011:271-297.
[14]
Han Y, Yu X, Wang X, et al. Net anthropogenic phosphorus inputs (NAPI) index application in Mainland China[J]. Chemosphere, 2013, 90(2):329-337.
[15]
高伟,高波,严长安,等.鄱阳湖流域人为氮磷输入演变及湖泊水环境响应[J]. 环境科学学报, 2016,36(9):3137-3145. Gao W, Gao B, Yan C A, et al. Evolution of anthropogenic nitrogen and phosphorus inputs to Lake Poyang Basin and its' effect on water quality of lake[J]. Acta Scientiae Circumstantiae, 2016,36(9):3137-3145.
[16]
王艾.流域人类活动净氮输入的时空变化及其对河道水质的影响[D]. 北京:清华大学, 2016. Wang A. Spatio-temporal variation of net anthropogenic nitrogen input in watersheds and the impact on river water quality[D]. Beijing:Tsinghua University, 2016.
[17]
丁雪坤.三峡库区面源污染人类活动输入及潜在风险评价[D]. 北京:北京林业大学, 2019. Ding X K. Net anthropogenic nitrogen and phosphorus inputs and non-point source pollution risk analysis of the Three Gorges reservoir Region[D]. Beijing:Beijing Forestry University, 2019.
[18]
李影,刘宏斌,雷秋良,等.洱海流域乡镇尺度上人类活动对净氮输入量的影响[J]. 环境科学, 2018,39(9):4189-4198. Li Y, Liu H B, Lei Q L, et al. Impact of human activities on net anthropogenic nitrogen inputs (NANI) at township scale in Erhai lake basin[J]. Environment Science, 2018,39(9):4189-4198.
[19]
杭州市淳安县统计局.淳安统计年鉴[J]. 北京:方志出版社, 2008-2017. Statistical Bureau of Chun'an County, Hangzhou. Chun'an Statistical Yearbook[J]. Beijing:Fangzhi Press, 2008-2017.
[20]
杭州市人民政府门户网.杭州市统计年鉴[EB/OL]. http://www.hangzhou.gov.cn/col/col805867/index.html. Hangzhou Municipal People's Government Portal. Hangzhou Statistical Yearbook[EB/OL]. http://tjj.cq.gov.cn/tjsj/shuju/tjnj/.
[21]
张柏发,陈丁江.1980~2010年浙江某典型河流硝态氮通量对净人类活动氮输入的动态响应[J]. 环境科学, 2014,35(8):2911-2919. Zhang B F, Chen D J. Dynamic response of riverine nitrate flux to net anthropogenic nitrogen inputs in a typical river in Zhejiang province over the 1980~2010 period[J]. Environmental Science, 2014,35(8):2911-2919.
[22]
张汪寿,李叙勇,杜新忠,等.流域人类活动净氮输入量的估算、不确定性及影响因素[J]. 生态学报, 2014,34(24):7454-7464. Zhang W S, Li X Y, Du X Z, et al. Accounting methods, uncertainties and influential factors of net anthropogenic nitrogen input (NANI)[J]. Acta Ecologica Sinica, 2014,34(24):7454-7464.
[23]
Han Y, Fan Y, Yang P, et al. Net anthropogenic nitrogen inputs (NANI) index application in Mainland China[J]. Geoderma, 2014,213(1):87-94.
[24]
翟凤英,何宇娜,王志宏,等.中国城乡居民膳食营养素摄入状况及变化趋势[J]. 营养学报, 2005,27(3):181-184. Zhai F Y, He Y N, Wang Z H, et al. The status and trends of dietary nutrients intake of Chinese population[J]. Acta Nutrimenta Sinica, 2005,27(3):181-184.
[25]
Authority E F S. Outcome of a public consultation on the draft scientific opinion of the EFSA panel on dietetic products, nutrition and allergies (NDA) on dietary reference values for protein[J]. EFSA Supporting Publications, 2012,225:26.
[26]
武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D]. 北京:中国农业科学院, 2005. Wu S X. The spatial and temporal change of nitrogen and phosphorus produced by livestock and poultry & their effects onagricultural non-point pollution in China[D]. Beijing:Chinese Academy of Agricultural Sciences, 2005.
[27]
黄德祥,张继凯.论水域的渔业污染与自净[J]. 重庆水产, 2003,(4):29-32. Huang D X, Zhang J K. Discussion on waters fishery pollution and self-purification[J]. Chongqing Fishery, 2003,(4):29-32.
[28]
杨月欣,王光亚.中国食物成分表[M]. 北京:北京大学医学出版社, 2009. Yang Y X, Wang G Y. China food ingredients table[M]. Beijing:Peking University Medical Press, 2009.
[29]
高伟,郭怀成,后希康.中国大陆市域人类活动净氮输入量(NANI)评估[J]. 北京大学学报(自然科学版), 2014,50(5):951-959. Gao W, Guo H C, Hou X K. Evaluating city-scale net anthropogenic nitrogen input (NANI) in mainland China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014,50(5):951-959.
[30]
Wang C, Wang X, Liu D, et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands[J]. Nature Communications, 2014,5:4799.
[31]
Prospero J M, Barrett K, Church T, et al. Atmospheric deposition of nutrients to the North Atlantic Basin[J]. Biogeochemistry, 1996,35(1):27-73.
[32]
Rock L, Mayer B. Nitrogen budget for the Oldman River Basin, southern Alberta, Canada[J]. Nutrient Cycling in Agroecosystems, 2006,75(1-3):147-162.
[33]
郑世伟.大气氮沉降背景下的天目山森林生态系统水文特征的研究[D]. 杭州:浙江农林大学, 2014. Zheng S W, Wang G Y. Study on the Hydrologic Characteristics of forest ecosystem under the background of atmospheric nitrogen deposition in Tianmu Mountain[D]. Hanzhou:Zhejiang A&F University, 2014.
[34]
朱炫,潘杨,焦锋.大气氮磷沉降量分析——以杭州北里湖为例[J]. 安全与环境学报, 2015,15(3):313-316. Zhu X, Pan Y, Jiao F.Analysis of the atmospheric deposition of nitrogen and phosphorus——taking with BeiliLake as an example[J]. Journal of Safety and Environment, 2015,15(3):313-316.
[35]
顾冬梅,邓开宇,李太谦,等.杭州北里湖大气沉降研究[J]. 安全与环境工程, 2013,20(1):36-40. Gu D M, Deng K Y, Li T Q, et al. Study on the atmospheric deposition of nitrogen and phosphorus in Beili Lake of Hangzhou[J]. Safety and Environmental Engineering, 2013,20(1):36-40.
[36]
李太谦.大气氮沉降对杭州北里湖的影响[D]. 苏州:苏州科技学院, 2011. Li T Q. Effects of atmospheric nitrogen deposition on Beili Lake in Hangzhou[D]. Suzhou:Suzhou University of Science and Technology, 2011.
[37]
王江飞.杭嘉湖大气氮、磷沉降特征及其对水环境的影响[D]. 杭州:浙江工业大学, 2015. Wang J F. Atmospheric deposition of nitrogen and its effect on the water environment in the Hangjiahu area[D]. Hanzhou:Zhejiang University of Technology, 2015.
[38]
张汪寿.流域人类活动养分输入及其对河流氮磷通量的影响[D]. 北京:中国科学院大学, 2016. Zhang W S. Nutrient input from human activities and its effect on fluxes of nitrogen and phosphorus in River Basin[D]. Beijing:University of Chinese Academy of Sciences, 2016.
[39]
Zhang Y, Bleeker A, Liu J. Nutrient discharge from China's aquaculture industry and associated environmental impacts[J]. Environmental Research Letters, 2015,10(4):S109.
[40]
商晓静.北京人工湿地的植物筛选与污水净化效果研究[D]. 北京:中国林业科学研究院, 2009. Shang X J. Study on plant species selection and wastewater purification efficiency in constructed wetlands in Beijing[D]. Beijing:Chinese Academy of Forestry Sciences, 2009.
[41]
Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:Past, present, and future[J]. Biogeochemistry, 2004,70(2):153-226.
[42]
GB3838-2002地表水环境质量标准[S]. GB3838-2002Surface water environmental quality standard[S].
[43]
付登高,吴晓妮,何锋,等.柴河流域不同景观类型径流氮磷含量及其计量比变化特征[J]. 生态与农村环境学报, 2015,31(5):671-676. Fu D G, Wu X N, He F, et al. Variation of concentrations and stoichiometric proportions of nitrogen and phosphorus in runoff with land use in Chaihe Catchment[J]. Journal of Ecology and Rural Environment, 2015,31(5):671-676.