Empirical study on the performance of the novel full-mixed kitchen waste biodrying
YAN Xiang-rui1, XIN Li-qing1, WANG Hao-shu1,2, MA Zhuang2, QIN Yong1, WU Wei-xiang1
1. College of Environmental and Resource Sciences, Zhenjiang University, Hangzhou 310058, China; 2. Zhejiang Transfer Environmental Protection Technology Co., Ltd, Hangzhou 311100, China
Abstract:The research developed a continuously full-mixed biodrying process of kitchen food waste. Impacts of the process performance on matrix’s temperature, moisture content and calorific values etc. were investigated at the pilot-scale. Results showed that it could not only significantly shorten start-up heating time, but also maintain high-temperature zone (>50℃) of the matrix temperature during the continuous operation of the biodrying for 20h/d. Under the optimal operation condition, such as ventilation volume of 0.171m3/(kg·h), heating temperature of 45℃ and retention time of 7d, the moisture content of kitchen food waste could be reduced to (34.86±1.71)% with a unit water removal rate of (716±23) kgwater/t waste and energy consumption of 77.91kW·h/twaste. The low calorific value of its derived fuel reached up to (6681±119)kJ/kg, which fulfilled the requirement for waste incineration and could rapidly convert kitchen waste to feed for fuel.
严祥瑞, 辛立庆, 王昊书, 马壮, 秦勇, 吴伟祥. 新型全混合式厨余垃圾生物干化工艺效能实证研究[J]. 中国环境科学, 2021, 41(7): 3291-3297.
YAN Xiang-rui, XIN Li-qing, WANG Hao-shu, MA Zhuang, QIN Yong, WU Wei-xiang. Empirical study on the performance of the novel full-mixed kitchen waste biodrying. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(7): 3291-3297.
杨娜,邵立明,何品晶.我国城市生活垃圾组分含水率及其特征分析[J]. 中国环境科学, 2018,38(3):1033-1038. Yang N, Shao L M, He P J. Study on the moisture content and its features for municipal solid waste fractions in China[J]. China Environmental Science, 2018,38(3):1033-1038.
[2]
韩泽东,李相儒,毕峰,等.我国农村生活垃圾分类收运模式探究——以杭州市为例[J]. 农业环境科学学报, 2019,38(3):688-695. Han Z D, Li X R, Bi F, et al. Classified collection and transportation patterns of rural domestic wastes in China:A case study of Hangzhou[J]. Journal of Agro-Environment Science, 2019,38(3):688-695.
[3]
Li X, Bi F, Han Z, et al. Garbage source classification performance, impact factor, and management strategy in rural areas of China:A case study in Hangzhou[J]. Waste Management, 2019,89(APR.):313-321.
[4]
Velis C A, Longhurst P J, Drew G H, et al. Biodrying for mechanical-biological treatment of wastes:A review of process science and engineering[J]. Bioresource Technology, 2009,100(11):2276-2747.
[5]
Adani F, Baido D, Calcaterra E, et al. The influence of biomass temperature on biostabilization-biodrying of municipal solid waste[J]. Bioresource Technology, 2002,83(3):173-179.
[6]
Perazzini H, Freire F B, Freire F B, et al. Thermal treatment of solid wastes using drying technologies:a review[J]. Drying Technology, 2016,34(1):39-52.
[7]
李相儒.农村厨余垃圾生物干化与腐熟工艺初探[D]. 杭州:浙江大学, 2019. Li X R. Study on bio-drying and composting of rural biodegradable waste[D]. Hangzhou:Zhejiang University, 2019.
[8]
齐琪,袁京,李赟,等.生活垃圾制备RDF工艺参数及其热特性研究[J]. 中国环境科学, 2017,37(3):1051-1057. Qi Q, Yuan J, Li Y, et al. Processing parameters and thermal characteristics of RDF based on municipal solid waste[J]. China Environmental Science, 2017,37(3):1051-1057.
[9]
赵卫兵,汪家权,胡淑恒,等.城市垃圾生物干化最佳工艺参数的优化研究[J]. 环境工程, 2015,33(8):97-100. Zhao W B, Wang J Q, Hu S H, et al. Optimization of processing parameters of organic msw bio-drying by orthogonal tests[J]. Environmental Engineering, 2015,33(8):97-100.
[10]
Jing Yuan, Yun Li, Wang Guo-ying, et al. Biodrying performance and combustion characteristics related to bulking agent amendments during kitchen waste biodrying[J]. Bioresource Technology, 2019, 284(284):56-64.
[11]
N, N, Ahmad, et al. Biodrying of municipal solid waste under different ventilation periods[J]. Environmental Engineering Research, 2016, 21(2):145-151.
[12]
袁京,张地方,李赟,等.外加碳源对厨余垃圾生物干化效果的影响[J]. 中国环境科学, 2017,37(2):628-635. Yuan J, Zhang D F, Li Y, et al. Effect of external carbon sources on biodrying of kitchen waste[J]. China Environmental Science, 2017, 37(2):628-635.
[13]
郭强,黄文雄,程海静.通风温度对生活垃圾生物干化脱水的影响[J]. 再生资源与循环经济, 2014,7(8):33-36. Guo Q, Huang W X, Cheng H J. Effect of bio-drying with various ventilation temperature on high-water-content municipal solid waste[J]. Recycling Research, 2014,7(8):33-36.
[14]
张晨,李杨杨,董黎明,等.预加热对柠檬酸脱水污泥冬季生物干化的影响[J]. 中国环境科学, 2019,39(7):2928-2037. Zhang C, Li Y Y, Dong L M, et al. Effect of pre-heating on bio-drying of citric acid dewatered sludge in winter[J]. China Environmental Science, 2019,39(7):2928-2037.
[15]
GB/T 18750-2008生活垃圾焚烧炉及余热锅炉[S]. GB/T 18750-2008 Municipal solid waste incinerator and boiler[S].
[16]
浙江大学.无升温期连续进料全混合式的生物干化设备及方法:中华人民共和国, 201911311862.5[P]. 2019-12-18. Zhejiang University. Full-mixed biodrying equipment and method with continuous feeding without heating period:China, 201911311862.5[P]. 2019-12-18.
[17]
韩竞耀,何品晶,张冬青,等.通风量和翻堆对生活垃圾好氧生物干化的影响[J]. 环境卫生工程, 2008,(3):23-25. Han J Y, He P J, Zhang D Q, et al. Influence of airflow rate and turning on aerobic bio-drying of domestic waste[J]. Environmental Sanitation Engineering, 2008,(3):23-25.
[18]
Liqing X, Zhaohui G, Xiyuan X, et al. Feasibility of anaerobic digestion for contaminated rice straw inoculated with waste activated sludge[J]. Bioresource Technology, 2018,266:45-50.
[19]
GB/T 213-2008煤的发热量测定方法[S]. GB/T 213-2008 Determination of calorific value of coal[S].
[20]
黄文雄,苏红玉,黄丹丹,等.通风方式对高含水率垃圾生物干化的影响[J]. 中国环境科学, 2012,32(8):1480-1486. Huang W X, Su H Y, Huang D D, et al. Effect of aeration modes on high water content municipal solid waste bio-drying[J]. China Environmental Science, 2012,32(8):1480-1486.
[21]
Hassen A. Microbial characterization during composting of municipal solid waste[J]. Bioresource Technology, 2001,80(3):217-225.
[22]
张凤,任勇翔,张海阳,等.投加方式和通风速率对脱水污泥堆肥效果的影响[J]. 环境工程学报, 2018,12(8):238-244. Zhang F, Ren Y X, Zhang H Y, et al. Influence of feeding mode and aeration rate on dewatered sludge aerobic composting[J]. Chinese Journal of Environmental Engineering, 2018,12(8):238-244.
[23]
Huilinir C, Villegas M. Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge[J]. Water Research, 2015,82(1):118-128.
[24]
Ma J, Zhang L, Mu L, et al. Energetic enhancement of thermal assistance in the cooling stage of biodrying by stimulating microbial degradation[J]. Waste Management, 2019,89(4):165-176.
[25]
Tom A P, Pawels R, Haridas A. Biodrying process:A sustainable technology for treatment of municipal solid waste with high moisture content[J]. Waste Management, 2016,49(3):64-72.
[26]
马闯,扈斌,刘福勇,等.有机废弃物好氧堆肥过程中微生物及酶活性变化状况综述[J]. 环境工程, 2019,37(9):159-164,187. Ma C, Hu B, Liu F Y, et al. Review on changes of microorganisms and enzyme activities during aerobic composting of organic waste[J]. Environmental Engineering, 2019,37(9):159-164,187.
[27]
刘盛萍,俞志敏,吴克,等.生物垃圾堆肥的影响因素及反应动力学研究[J]. 安徽农业科学, 2011,39(15):8965-8966. Liu S P, Yu Z M, Wu K, et al. Study on the influencing factors and kinetics of bio-waste composting[J]. Journal of Anhui Agricultural Sciences, 2011,39(15):8965-8966.
[28]
Cesar H, Perez J. A new model of batch biodrying of sewage sludge, Part 2:Model calibration and validation[J]. Drying Technology:an International Journal, 2017,35(5):666-679.
[29]
席北斗,李英军,张晓萱,等.垃圾堆肥工艺过程动态模拟及优化研究[J]. 环境工程学报, 2005,6(2):20-23. Xi B D, Li Y J, Zhang X X, et al. Study on dynamic simulation of composting processes for domestic solid wastes[J]. Techniques and Equipment for Environmental Pollution Control, 2005,6(2):20-23.
[30]
罗维,陈同斌,高定,等.混合堆肥过程中挥发性固体含量的层次效应及动态变化[J]. 环境科学, 2004,25(3):155-159. Luo W, Chen T B, Gao D, et al. Stratification of volatile solid content and its dynamics in the process of co-composting[J]. Chinese Journal of Environmental Science, 2004,25(3):155-159.
[31]
何品晶.固体废物处理与资源化技术[M]. 北京:高等教育出版社, 2011. He P J. Solid waste treatment and resource technology[M]. Beijing:Higher Education Press, 2011.
[32]
任超峰,方朝军,夏小栋,等.城市生活垃圾固体回收燃料在中国的发展前景[J]. 现代化工, 2019,(9):1-4. Ren C F, Fang C J, Xia X D, et al. Development prospect of solid recovery fuels from municipal solid wastes in China[J]. Modern Chemical Industry, 2019,(9):1-4.