Improvement of planetary boundary layer height and variation of dust devil emission in desert areas
GAO Ya-wen1, HAN Yong-xiang1, LI Jia-xin1, LU Zheng-qi1, QIN Pei1, LIU Wei-jia1, LIANG Yun2
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. Electric Power Research Institude, Electric Power of Henan2, Zhengzhou 450000, China
Abstract:On the basis of the YSU (Yonsei University) boundary layer parameterization scheme, an empirical revised boundary layer RYSU scheme was adopted in this paper, whose simulated boundary layer height was consistent with the observation. Meanwhile, the dust devil emission scheme was applied to obtain the spatial and temporal distribution of the summer dust devil's dust emission in Tengger Desert in 2019. The results revealed that from 08:00 to 18:00, the dust devil's instantaneous dust emission and dust range simulated by the RYSU scheme were higher than those of the YSU scheme. The time when the dust emission and the range of the former was the largest was 15:00, which was one hour later than the latter. It was closer to the occurrence frequency of the dust devil observed in the Tengger Desert. Furthermore, the total daily dust devil emission in the study area from June to August with the RYSU scheme was almost three times higher than with the YSU scheme, and the maximum instantaneous dust devil emission estimated with the RYSU scheme was closer to the value calculated with the maximum height of the observed boundary layer than with the YSU scheme.
Wang W C, Sheng L F, Jin H C, et al. Dust aerosol effects on cirrus and altocumulus clouds in Northwest China[J]. Journal of Meteorological Research, 2015,29(5):793-805.
[2]
Mahowald N, Ward D S, Kloster S, et al. Aerosol impacts on climate and biogeochemistry[J]. Annual Review of Environment and Resources, 2011,36.
[3]
Huang J, Minnis P, Lin B, et al. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES[J]. Geophysical Research Letters, 2006,33(6):1-4.
[4]
张凯,高会旺,张仁健,等.我国沙尘的来源、移动路径及对东部海域的影响[J]. 地球科学进展, 2005,(6):627-636. Zhang K, Gao H W, Zhang R J, et al. The source, moving path of dust and its influence on the eastern waters in China[J]. Progress in Earth Science, 2005,(6):627-636.
[5]
Han Y X, Dai X, Fang Y, et al. Dust aerosols:A possible accelerant for an increasingly arid climate in North China[J]. Journal of Arid Environments, 2008,72(8):1476-1489.
[6]
Ginoux P, Chin M, Tegen I, et al. Sources and distributions of dust aerosols simulated with the GOCART model[J]. Journal of Geophysical Research Atmospheres, 2001,106(D17):20255-20274.
[7]
Krasnov H, Katra I, Friger M. Increase in dust storm related PM10 concentrations:A time series analysis of 2001~2015[J]. Environmental Pollution, 2016,213:36-42.
[8]
Agsson W P, Arnalds O, Olafsson H. Long-term frequency and characteristics of dust storm events in Northeast Iceland (1949~2011)[J]. Atmospheric Environment, 2013,77(7):117-127.
[9]
Zhao T L, Gong S L, Zhang X Y, et al. Asian dust storm influence on North American ambient PM levels:observational evidence and controlling factors[J]. Atmospheric Chemistry & Physics Discussions, 2007,7(10):2717-2728.
[10]
Rennó T, Nilton O, Matthew L, et al. A simple thermodynamical theory for dust devils[J]. Journal of the Atmospheric Sciences, 1998, 55(21):3244-3252.
Garratt J R. The atmospheric boundary layer[M]. Cambridge:Cambridge University Press, 1992:316.
[13]
Ma M, Pu Z, Wang S, et al. Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in North-west China[J]. Boundary-Layer Meteorology, 2011, 140(1):163-176.
[14]
罗汉,韩永翔,李岩瑛.边界层高度时间演变及尘卷风对总沙尘量的贡献[J]. 中国环境科学, 2017,37(7):2438-2442. Luo H, Han Y X, Li Y Y. High time evolution of boundary layer and contribution of dust coil to the total dust volume[J]. Chinese Environmental Science, 2017,37(7):2438-2442.
[15]
陆正奇,韩永翔,夏俊荣,等.WRF模式对污染天气下边界层高度的模拟研究[J]. 中国环境科学, 2018,38(3):822-829. Lu Z Q, Han Y X, Xia J R, et al. Simulation study of the boundary layer height in polluted weather[J]. Chinese Environmental Science, 2018,38(3):822-829.
[16]
罗汉.干旱区大气边界层高度时间演变及尘卷风对大气沙尘气溶胶的贡献[D]. 南京:南京信息工程大学, 2017. Luo H. High time evolution of atmospheric boundary layer in arid zone and contribution of dust coil to atmospheric dust aerosols[D]. Nanjing:Nanjing University of Information Engineering, 2017.
[17]
Mostafa M, Mahmoud F. Sensitivity of WRF model output to planetary boundary layer height variation over North Africa[J]. International Journal of Scientific Research in Science, Engineering and Technology 3, 2017:269-287.
[18]
汤耀国.中国北方尘卷风的起沙参数化方案改进及其辐射效应数值模拟[D]. 南京:南京信息工程大学, 2018. Tang Y G. Improvement of sand start parameterization scheme of North China and numerical simulation of radiation effect[D]. Nanjing:Nanjing University of Information Engineering, 2018.
[19]
Jemmettsmith B, Marsham J, Knippertz P, et al. Quantifying global dust devil occurrence from meteorological analyses[J]. Geophysical Research Letters, 2015,42(4):1275-1282.
[20]
李得禄,马全林,张锦春.腾格里沙漠植被特征[J]. 中国沙漠, 2020, 40(4):223-233. Li D L, Ma Q L, Zhang J C. Vegetation characteristics of Tengger Desert[J]. Journal of Desert Reserch, 2020,40(4):223-233.
[21]
Grell G A, Peckham S E, Schmitz R, et al. Fully coupled "online" chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39(37):6957-6975.
[22]
张时煌,彭公炳,黄玫.基于遥感与地理信息系统支持下的地表植被特征参数反演[J]. 气候与环境研究, 2004,9(1):80-91. Zhang S H, Peng G B, Huang M. Retrieval of surface vegetation characteristic parameters based on the support of remote sensing and geographic information system[J]. Climatic and Environmental Research, 2004,9(1):80-91.
[23]
牛生杰,吕晶晶,岳平,等.半干旱荒漠化草原春季边界层特征的一次综合探测[J]. 中国沙漠, 2013,33(6):1858-1865. Niu S J, Lv J J, Yue P, et al. A comprehensive survey of spring boundary layer characteristics of semi-arid desertification grassland[J]. Journal of Desert Reserch, 2013,33(6):1858-1865.
[24]
李岩瑛,张强,胡兴才,等.西北干旱区和黄土高原大气边界层特征对比及其对气候干湿变化的响应[J]. 冰川冻土, 2012,34(5):1047-1058. Li Y Y, Zhang Q, Hu X C, et al. Comparison of atmospheric boundary characteristics between Northwest Drought Zone and Loess Plateau and its response to dry and wet climate changes[J]. Glacier Premafrost, 2012,34(5):1047-1058.
[25]
廖国莲.大气混合层厚度的计算方法及影响因子[J]. 中山大学研究生学刊(自然科学、医学版), 2005,(4):66-73. Liao G L. Calculation method and influence factor of the thickness of the atmospheric mixing layer[J]. Graduate Journal of Sun Yat-sen University (Natural Science, Medical Edition), 2005,(4):66-73.
[26]
Sinclair P C. General characteristics of dust devils[J]. Journal of Applied Meteorology, 1969,8(1):32-45.
[27]
Balme M, Hagermann A. Particle lifting at the soil-air interface by atmospheric pressure excursions in dust devils[J]. Geophysical Research Letters, 2006,33(19):1-5.
[28]
Metzger S M. Dust devils as aeolian transport mechanisms in southern Nevada and the Mars Pathfinder landing site[D]. Nevada:University of Nevada, Reno., 1999.
[29]
Gillette D A, Sinclair P C. Estimation of suspension of alkaline material by dust devils in the United States[J]. Atmospheric Environment Part A General Topics, 1990,24(5):1135-1142.
[30]
王康弘.腾格里沙漠西南缘尘卷风的观测及其起沙分布的精细模拟[D]. 南京:南京信息工程大学, 2020. Wang K H. Observation of dust scrolls on the southwest edge of the Tengger Desert and the fine simulation of the sand lifting distribution[D]. Nanjing:Nanjing University of Information Engineering, 2020.