Influence of different boundary layer schemes on PM2.5 concentration simulation in Nanjing
WANG An-ting1, LI Yu-bin1, ZHAO Chun2, DU Qiu-yan2, WANG Xiao-dong2, GAO Zhi-qiu1
1. College of Atmospheric Physics, Nanjing University of Information Technology, Nanjing 210044, China; 2. School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China
Abstract:Based on the WRF-Chem (Weather Research and Forecasting Chemistry Model) air quality model, this paper used four boundary layer schemes including YSU (Yonsei University), MYJ (Mellor Yamada Janjic), MYNN2 (Mellor Yamada Nakanishi Niino Level 2), and ACM2 (Asymmetric Convective Model2), and two ACM2-based modified schemes ACM2R2 (the turbulence diffusion coefficient threshold of the lowest 6 layers was set to 2m2/s) and ACM2R5 (the turbulence diffusion coefficient threshold of the lowest 10 layers was set to 5m2/s), the effects of different boundary layer schemes on PM2.5 concentration simulation in Nanjing were analyzed. The results showed that the surface meteorological elements and wind/temperature/humidity profiles simulated by the six schemes presented reasonable diurnal variation characteristics and height variation, and the difference of meteorological elements among different boundary layer schemes was small. However, the four boundary layer schemes YSU, MYJ, MYNN2, and ACM2 overestimated PM2.5 concentration at night, while ACM2R2 and ACM2R5 significantly reduced the PM2.5 concentration, even sometimes to a level of underestimation. In terms of the deviation of the whole period, ACM2R2 was closest to the observed value. This was due to the higher turbulent diffusion coefficient of ACM2R2 at night, which was more conducive to the upward diffusion of pollutants from the surface, and made the surface PM2.5 concentration of ACM2R2 scheme lower than that of the original ACM2 scheme at night, thus amended the overestimation of the original ACM2 scheme. These results show that the difference in turbulent diffusion coefficient is an important reason for the difference in PM2.5 concentration simulation, and it is necessary to accurately parameterize the turbulent diffusion coefficient in the boundary layer scheme at night to improve the accuracy of the PM2.5 concentration simulation.
王安庭, 李煜斌, 赵纯, 杜秋燕, 王晓东, 高志球. 边界层方案对南京地区PM2.5浓度模拟的影响[J]. 中国环境科学, 2021, 41(7): 2977-2992.
WANG An-ting, LI Yu-bin, ZHAO Chun, DU Qiu-yan, WANG Xiao-dong, GAO Zhi-qiu. Influence of different boundary layer schemes on PM2.5 concentration simulation in Nanjing. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(7): 2977-2992.
王淑兰,柴发合,高健.我国中长期PM2.5污染控制战略及对策[J]. 环境与可持续发展, 2013,04:10-13. Wang S L, Chai F H, Gao J. Medium and long term PM2.5 pollution control strategy and Countermeasures in China[J]. Environment and sustainable development, 2013,04:10-13.
[2]
Wang H, Gao Z Q, Ren J Z, et al. A urban-rural and sex differences in cancer incidence and mortality and the relationship with PM2.5 exposure:An ecological study in the southeastern side of Hu line[J]. Chemosphere, 2019,216:766-773.
[3]
Wang X Y, Liang X Z, Jiang W M, et al. WRF-Chem simulation of East Asian air quality:Sensitivity to temporal and vertical emissions distributions[J]. Atmospheric Environment, 2010,(44):660-669.
[4]
吕梦瑶,程兴宏,张恒德,等.基于自适应偏最小二乘回归法的CUACE模式污染物预报偏差订正改进方法研究[J]. 环境科学学报, 2018,38(7):2735-2745. Lu M Y, Cheng X H, Zhang H D, et al. Study on the improvement method of pollutant prediction bias correction based on adaptive partial least squares regression[J]. Journal of Environmental Sciences, 2018,38(7):2735-2745.
[5]
Chen F, Kusaka H, Bornstein R, et al. The integrated WRF/urban modelling system:development, evaluation, and applications to urban environmental problems[J]. Internation Journal of Climatology, 2011, 31(2):273-288.
[6]
Su T N, Li Z Q, Kahn R. A new method to retrieve the diurnal variability of planetary boundary layer height from lidar under different thermodynamic stability conditions[J]. Remote Sensing of Environment, 2020,doi:10.1016/j.rse.2019.111519.
[7]
苗世光,蒋纬楣.森林冠层和森林边界层大涡模拟[J]. 地球物理学报, 2004,47(4):597-603. Miao S G, Jiang W M. Large eddy simulation of forest canopy and forest boundary layer[J]. Chinese Journal of Geophysics, 2004,47(4):597-603.
[8]
朱燕舞,刘文清,谢品华,等.北京边界层大气污染物的垂直廓线监测与分析[J]. 地球物理学报, 2010,53(6):1278-1283. Zhu Y W, Liu W Q, Xie P h, et al. Vertical profile monitoring and analysis of air pollutants in Beijing boundary layer[J]. Chinese Journal of Geophysics, 2010,53(6):1278-1283.
[9]
Guo J P, Miao Y C, Zhang Y, et al. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J]. Atmospheric chemistry and physics, 2016,16:13309-13319.
[10]
Shi T Q, Ma X, Han G, et al. Measurement of CO2 rectifier effect during summer and winter using ground-based differential absorption LiDAR[J]. Atmospheric Environment, 2020,doi:10.1016/j.atmosenv. 2019.117097.
[11]
Zhang Y, Pan Y, Wang K, et al. WRF/Chem-MADRID:Incorporation of an aerosol module into WRF/Chem and its initial application to the TexAQS2000 episode[J]. Journal Geophysical Research, 2010,115:D18202.
[12]
王成刚,沈滢洁,罗峰,等.晴天及阴天条件下WRF模式中集中边界层参数化方案的对比分析研究[J]. 地球物理学报, 2017,60(3):924-934. Wang C G, Shen Y J, Luo F, et al. Comparative analysis of centralized boundary layer parameterization schemes in WRF model under sunny and cloudy conditions[J]. Chinese Journal of Geophysics, 2017,60(3):924-934.
[13]
Lv Z, Wei W, Cheng S Y, et al. Meteorological characteristics within boundary layer and its influence on PM2.5pollution in six cities of North China based on WRF-Chem[J]. Atmospheric Environment, 2020,doi:10.1016/j.atmosenv.2020.117417.
[14]
Moreira G D, Guerrero-Rascado J L, Bravo-Aranda J A, et al. Study of the planetary boundary layer height in an urban environment using a combination of microwave radiometer and ceilometers[J]. Atmospheric Research, 2020,doi:10.1016/j.atmosres.2020.104932.
[15]
Tran H N Q, Molders N. Investigations on meteorological conditions for elevated PM2.5 in Fairbanks, Alaska[J]. Atmospheric Research, 2011,99(1):39-49.
[16]
孙扬,王跃思,李昕,等.北京地区一次持续重污染过程O3、NOx、CO的垂直分布分析[J]. 地球物理学报, 2006,49(6):1616-1622. Sun Y, Wang Y S, Li X, et al. Vertical distribution of O3, NOx and CO in a continuous heavy pollution process in Beijing[J]. Chinese Journal of Geophysics, 2006,49(6):1616-1622.
[17]
杨先逸,车慧正,陈权亮,等.天空辐射计观测反演北京城区气溶胶光学特性[J]. 应用气象学报, 2020,31(3):119-130. Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties from sky radiometer observations[J]. Journal of Applied Meteorological Science, 2020,31(3):119-130.
[18]
黄文彦,沈新勇,王卫国,等.边界层参数化方案对边界层热力和动力结构特征影响的比较[J]. 地球物理学报, 2014,57(5):1399-1414. Huang W Y, Shen X Y, Wang W G, et al. Comparison of the effects of boundary layer parameterization schemes on thermal and dynamic structural characteristics of boundary layer[J]. Chinese Journal of Geophysics, 2014,57(5):1399-1414.
[19]
Russell A, Dennis R. NARSTO critical review of photochemical models and modeling[J]. Atmospheric Environment, 2000,34(12):2283-2324.
[20]
郑亦佳,刘树华,缪育聪,等.YSU边界层参数化方案中不同地形订正方法对地面风速及温度模拟的影响[J]. 地球物理学报, 2016, 59(3):803-815. Zheng Y J, Liu S H, Miao Y C, et al. Effects of different terrain correction methods on surface wind speed and temperature simulation in ysu boundary layer parameterization scheme[J]. Chinese Journal of Geophysics, 2016,59(3):803-815.
[21]
侯梦玲,王宏,赵天良,等.京津冀一次重度雾霾天气能见度及边界层关键气象要素的模拟研究[J]. 大气科学, 2017,41(6):1177-1190. Hou M L, Wang H, Zhao T L, et al. Simulation study on visibility and key meteorological elements of boundary layer in a severe haze weather in Beijing, Tianjin and Hebei[J]. Atmospheric Science, 2017, 41(6):1177-1190.
[22]
徐敬,马志强,赵秀娟,等.边界层方案对华北底层O3垂直分布模拟的影响[J]. 应用气象学报, 2015,26(5):567-577. Xu J, Ma Z Q, Zhao X J, et al. Influence of boundary layer scheme on simulation of vertical distribution of bottom O3 in North China[J]. Journal of Applied Meteorology, 2015,26(5):567-577.
[23]
王继康,张碧辉.边界层方案对华北一次污染过程模拟的影响[J]. 中国环境科学, 2019,39(1):61-71. Wang J K, Zhang B H. Influence of boundary layer scheme on the simulation of primary pollution process in North China[J]. China Environmental Science, 2019,39(1):61-71.
[24]
Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006,134:2318-2341.
[25]
Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics and Space Physics, 1982,20:851-875.
[26]
Pleim J E. A combined local and nonlocal closure model for the atmospheric boundary layer, part I:Model description and testing[J]. Journal of Applied Meteorology & Climatology, 2007,46(9):1383-1395.
[27]
董春卿,郑有飞,武永利,等.边界层方案对山西冬季一次静稳天气PM2.5浓度模拟的影响[J]. 中国环境科学, 2016,36(6):1669-1680. Dong C Q, Zheng Y F, Wu Y L, et al. Influence of boundary layer scheme on PM2.5 concentration simulation of a static and stable weather in Shanxi in winter[J]. China Environmental Science, 2016, 36(6):1669-1680.
[28]
蔡子颖,姚青,韩素芹,等.基于多种边界层方案的天津PM2.5集合预报试验[J]. 应用气象学报, 2017,28(5):611-620. Cai Z Y, Yao Q, Han S Q, et al. Tianjin PM2.5ensemble forecast experiment based on multiple boundary layer schemes[J]. Journal of Applied Meteorological Science, 2017,28(5):611-620.
[29]
Bougeault P, Lacarrere P. Parameterization of orography-induced turbulence in a mesobeta-scale model[J]. Monthly Weather Review, 1989,117(8):1872-1890.
[30]
Nakanishi M, Niino H. Development of an improved turbulence closure model for the atmospheric boundary layer[J]. Journal of the Meteorological Society of Japan, 2009,87(5):895-912.
[31]
Zhao Y H, Zhang L, Zhou M, et al. Influences of planetary boundary layer mixing parameterization on summertime surface ozone concentration and dry deposition over North China[J]. Atmospheric Environment, 2019,doi:10.1016/j.atmosenv.2019.116950.
[32]
Cuchiara G C, Li X, Carvalho J, et al. Intercomparison of planetary boundary layer parameterization and its impacts on surface ozone concentration in the WRF/Chem model for a case study in Houston/Texas[J]. Atmospheric Environment, 2014,96:175-185.
[33]
Sukoriansky S. Implementation of Quasi-Normal Scale Elimination model of stably stratified turbulence in WRF[R]. Report on WRF-DTC Visit of Semion Sukoriansky-June, 2008.
[34]
Banks R F, Baldasano J M. Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain[J]. Science of the Total Environment, 2016,572:98-113.
[35]
Parra R. Performance studies of planetary boundary layer schemes in WRF-Chem for the Andean region of Southern Ecuador[J]. Atmospheric Pollution Research, 2017,doi:10.1016/j.apr.2017.11.011.
[36]
Nakanishi M, Niino H. An Improved Mellor-Yamada Level 3model:Its numerical stability and application to a regional prediction of advection fog[J]. Boundary-Layer Meteorology, 2006,119:397-407.
[37]
Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Monthly Weather Review, 1996, 124:2322-2339.
[38]
De lange A, Naidoo M, Garland R M, et al. Sensitivity of meteorological variables on planetary boundary layer parameterization schemes in the WRF-ARW model[J]. Atmospheric Research, 2020. doi:10.1016/j.atmosres.2020.105214.
[39]
Ding A J, Fu C B, Yang X Q, et al. Ozone and fine particles in the western Yangtze River Delta:An overview of 1yr data at the SORPES station[J]. Atmospheric Chemistry and Physics, 2013,13(11):5813-5830.
[40]
Fan M Y, Zhang Y L, Lin Y C, et al. Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season[J]. Chemosphere, 2020.doi:10.1016/j.chemosphere.2020.128025.
[41]
Wang X, Du P, Chen D, et al. Characterizing urbanization-induced land surface phenology change from time-series remotely sensed images at fine spatio-temporal scale:A case study in Nanjing, China (2001~2018)[J]. Journal of Cleaner Production, 2020,doi:10.1016/j.jclepro.2020.122487.
[42]
Fan S H, GAO Z Q, Kalogiros J, et al. Estimate of Boundary-Layer Depth in Nanjing City using Aerosol Lidar Data during 2016~2017 Winter[J]. Atmospheric Environment, 2020,doi:10.1016/j.atmosenv. 2019.02.022.
[43]
Yegorova E A, Allen D J, Loughner C P, et al. Characterization of an eastern U.S. severe air pollution episode using WRF/Chem[J]. Journal of Geophysical Research Atmospheres, 2011,116,D17306.
[44]
Su L, Fung J C H. Sensitivities of WRF-Chem to dust emission schemes and land surface properties in simulating dust cycles during springtime over east Asia[J]. Journal of Geophysical Research Atmospheres, 2015,120:11, 215-11,230.
[45]
韩素芹,冯银广,边海.天津大气污染物日变化特征的WRF-Chem数值模拟[J]. 中国环境科学, 2008,28(9):828-832. Han S Q, Feng Y G, Bian H. WRF-Chem numerical simulation of daily variation characteristics of air pollutants in Tianjin[J]. China Environmental Science, 2008,28(9):828-832.
[46]
Du Q Y, Zhao C, Zhang M, et al. Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem:impacts from boundary-layer mixing and anthropogenic emission[J]. Atmospheric Chemistry Physics, 2020,20:2839-2863.
[47]
Zhao C, Chen S, Leung L R, et al. A and Huang J. Uncertainty in modeling dust mass balance and radiative forcing from size parameterization[J]. Atmospheric Chemistry and Physics, 2013a,13:10733-10753.
[48]
Zhao C, Ruby L L, Easter R, et al. Characterization of speciated aerosol direct radiative forcing over California.[J]. Journal of Geophysical Research Atmospheres, 2013b,118:2372-2388.
[49]
Zhao C, Hu Z, Qian Y, et al. Simulating black carbon and dust andtheir radiative forcing in seasonal snow:a case study over North China with field campaign measurements[J]. Atmospheric Chemistry and Physics, 2014,14:11475-11491.
[50]
Zhao C, Huang M Y, Fast J D, et al. Sensitivity of biogenic volatile organic compounds to land surface parameterizations andvegetation distributions in California, Geosci[J]. Geoscientific Model Development Discussions, 2016,9:1959-1976.
[51]
Hu Z, Zhao C, Huang J, et al. Trans-Pacific transport and evolution of aerosols:evaluation of quasi-global WRF-Chem simulation with multiple observations[J]. Geoscientific Model Development, 2016,9:1725-1746.
[52]
Zaveri R A, Peters L K. A new lumped structure photochemical mechanism for long-scale applications[J]. Journal of Geophysical Research Atmospheres, 1999,104(D23):30387-30415.
[53]
Zhang Y, Chen Y, Sarwar G, et al. Impact of gas-phase mechanisms on weather research forecasting model with chemistry (WRF/Chem) predictions:Mechanism implementation and comparative evaluation. J[J]. Journal of Geophysical Research:Atmospheres, 2012,doi:10.1029/2011JD015775.
[54]
Wild O, Zhu X, Prather M J. Fast-J:Accurate simulation of in and below-cloud photolysis in tropospheric chemical models[J]. Journal of Atmospheric Chemistry, 2000,37(3):245-282.
[55]
Lacono M J, Delamere J S, Mlawer E J, et al. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J]. Journal of Geophysical Research:Atmospheres, 2008,113(D13):D13103.
[56]
Kain J S. The Kain-Fritsch convective parameterization:An update[J]. Journal of Applied Meteorology, 2004,43:170-181.
[57]
陈广宇,韦志刚,董文杰,等.中国西部陆面过程次网格地形参数化的改进对区域气温和降水模拟的影响研究[J]. 大气科学, 2019,43(4):846-860. Chen G Y, Wei Z G, Dong W J, et al. Study on the influence of improved terrain parameterization of sub grid terrain on regional temperature and precipitation simulation in western China[J]. Atmospheric Science, 2019,43(4):846-860.
[58]
周密,常鸣,赖安琪.未来土地利用类型对珠江三角洲气象场的影响[J]. 中国环境科学, 2017,37(8):2896-2904. Zhou M, Chang M, Lai A Q. Impact of future land use types on meteorological field in the Pearl river delta[J]. China Environmental Science, 2017,37(8):2896-2904.
[59]
王秋云,严明良,包云轩,等.基于不同陆面参数化方案的高温天气数值模拟[J]. 气象科技, 2011,(5):537-544. Wang Q Y, Yan M L, Bao Y X, et al. Numerical simulation of high temperature weather based on different land surface parameterization schemes[J]. Meteorological Science and Technology, 2011,(5):537-544.
[60]
Kishné A S, Yimam Y T, Morgan C L S, et al. Evaluation and improvement of the default soil hydraulic parameters for the noah land surface model[J]. Geoderma, 2017:247-259.
[61]
Coniglio M C, Correia J, Marsh P T, et al. Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations[J]. Weather Forecasting, 2013,doi:10.1175/WAF-D-12-00103.1.
[62]
Janssens-Maenhout G, Crippa M, Guizzardi D, et al. HTAP_v2.2:a mosaic of regional and global emission grid maps for 2008and 2010to study hemispheric transport of air pollution[J]. Atmospheric Chemistry and Physics, 2015,15:11411-11432.
[63]
何斌,梅士龙,陆琛莉,等. MEIC排放清单在空气质量模式中的应用研究[J]. 中国环境科学, 2017,37(10):3658-3668. He B, Mei S L, Lu C L, et al. Application of MEIC emission inventory in air quality model[J]. China Environmental Science, 2017,37(10):3658-3668.
[64]
胡亚男,马晓燕,沙桐,等.不同排放源对华东地区PM2.5影响的数值模拟[J]. 中国环境科学, 2018,38(5):1616-1628. Hu Y N, Ma X Y, Sha T, et al. Numerical simulation of the impact of different emission sources on PM2.5 in East China[J]. China Environmental Science, 2018,38(5):1616-1628.
[65]
Sun K, Liu H N, Ding A J, et al. WRF-Chem Simulation of a Severe Haze Episode in the Yangtze River Delta, China[J]. Aerosol and Air Quality Research, 2016,16:1268-1283.
[66]
Wang X, Liang X Z, Jiang W, et al. A:WRF-Chem simulation of east Asian air quality:Sensitivity to temporal and vertical emissions distributions[J]. Atmospheric Environment, 2010,44:660-669.
[67]
Wang X P, Mauzerall D L, Hu Y, et al. A high resolution emission inventory for eastern China in 2000 and three scenarios for 2020[J]. Atmospheric Environment, 2005,39:5917-5933.
[68]
Wiedinmyer C, Akagi S K, Yokelson R J, et al. The fire inventory from NCAR(FINN)-a heigh resolution global model to estimate the emissions from open burning[J]. Geoscientific Model Development Discussions, 2010,3:2439-2467.
[69]
Ginoux P, Chin M, Tegen I, et al. Sources and distributions of dust aerosols simulated with the GOCART model.[J] Journal of Geophysical Research Atmospheres, 2001,106:20225-20273.
[70]
梁丰,王迎春.用中尺度非静力模式制作北京气温和风预报[J]. 气象, 2000,6:33-39. Liang F, Wang Y C. Using mesoscale non hydrostatic model to forecast temperature and wind in Beijing[J]. Meteorology, 2000,6:33-39.
[71]
Landelius T, Dahlgren P, Gollvik S, et al. A high-resolution regional reanalysis for Europe. Part 2:2D analysis of surface temperature, precipitation and wind[J]. Quarterly Journal of the Royal Meteorological Society, 2016,142(698):2132-2142.
[72]
Hu X M, Nielsen-Gammon J W, Zhang F Q. Evaluation of three planetary boundary layer schemes in the WRF Model[J]. Journal of Applied Meteorology and Climatology, 2010,49(9):1831-1844.
[73]
张碧辉,刘树华,马雁军. MYJ和YSU方案对WRF边界层气象要素模拟的影响[J]. 地球物理学报, 2012,55(7):2239-2248. Zhang B H, Liu S H, Ma Y J. Influence of myj and ysu.schemes on WRF boundary layer meteorological element simulation[J]. Chinese Journal of Geophysics, 2012,55(7):2239-2248.
[74]
Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II:Preliminary model validation[J]. Monthly Weather Review, 2001, 129(4):587-604.
[75]
Jia W, Zhang X. The role of the planetary boundary layer parameterization schemes on the meteorological and aerosol pollution simulations:A review. 2019[J]. Atmospheric Research, 2020,doi:10.1016/j.atmosres.2020.104890.
[76]
王琳,谢晨波,韩永,等.测量大气边界层高度的激光雷达数据反演方法研究[J]. 大气与环境光学学报, 2012,doi:10.3669/j.issn. 1673-6141.2012.04.001. Wang L, Xie C B, Han Y, et al. Study on lidar data inversion method for measuring atmospheric boundary layer height[J]. Journal of Atmospheric and Environmental Optics, 2012,doi:10.3669/j.issn. 1673-6141.2012.04.001.
[77]
Hu X M, Klein P M, Xue M. Evaluation of the updated ysu planetary boundary layer scheme within WRF for wind resource and air quality assessments[J]. Journal of Geophysical. Research Atmospheres, 2013, 118:10,490-10,505.