Ozone pollution synoptic patterns and their variation characteristics in Guangdong Province
LI Ting-yuan1, CHEN Jing-yang1, WENG Jia-feng2, SHEN Jin3, GONG Yu1
1. Guangdong Ecological Meteorological Center (Pearl River Delta Center for Environmental Meteorology Prediction and Warning), Guangzhou 510640, China; 2. Zhaoqing Meteorology Bureau, Zhaoqing 526060, China; 3. Guangdong Environment Monitoring Center, Guangzhou 510308, China
Abstract:Based on the surface observation data, reanalysis data as well as the SOM objective classification method, ozone pollution synoptic patterns and their variation characteristics in Guangdong (GD) during 2015~2020 were diagnosed and analyzed by different seasons and regions. The ozone pollution kept an upward tendency year by year from 2015 to 2019, with an impressive increase from 2017 to 2019 but a dramatic decrease in 2020. Changes in meteorological conditions and pollutant emissions played an important role in the variation of O3 pollution. The ozone concentration in dry season was close to or higher than that in wet season, and the number of polluted cities during dry season was also close to wet season. Weak cold high ridge (HR) was the dominant synoptic pattern affecting the ozone pollution, which caused 526cities over standard during 6years. The dominant synoptic patterns of ozone pollution in GD were HR and typhoon periphery (TP) in dry and wet season, respectively. The proportion of pollution days under the control of HR in dry season raised obviously, which surpassed TP in wet season and became the most important weather type affecting ozone pollution. Under the control of HR, the transport paths of ozone in four regions mainly included northeast path and coastal path. Regional ozone pollution in PRD and North-GD were greatly affected by local emissions under the control of TP and DR in wet season, respectively.
Pleijel H, Broberg M C, Uddling J. Ozone impact on wheat in Europe, Asia and North America – A comparison [J]. Science of The Total Environment, 2019,664:908-914.
[2]
Maji K J, Namdeo A. Continuous increases of surface ozone and associated premature mortality growth in China during 2015~2019 [J]. Environmental Pollution, 2021,269C:116183.
[3]
Sharps K, Vieno M, Beck R, et al. Quantifying the impact of ozone on crops in Sub-Saharan Africa demonstrates regional and local hotspots of production loss [J]. Environmental Science and Pollution Research, 2021,28(44):62338-62352.
[4]
Wang W C, Liang X Z, Dudek M P, et al. Atmospheric ozone as a climate gas [J]. Atmospheric Research, 1995,37:247-256.
[5]
Beaney G, Gough W A. The influence of tropospheric ozone on the air temperature of the city of Toronto, Ontario, Canada [J]. Atmospheric Environment, 2002,36:2319–2325.
[6]
吴 兑,毕雪岩,邓雪娇,等.珠江三角洲大气灰霾导致能见度下降问题研究 [J]. 气象学报, 2006,64(4):510-517. Wu D, Bi X Y, Deng X J, et al. Effect of atmospheric haze on the deterioration of visibility over the Pear River Delta [J]. Acta Meteorologica Sinica, 2006,64(4):510-517.
[7]
Li T Y, Deng X J, Li Y, et al. Transport paths and vertical exchange characteristics of haze pollution in Southern China [J]. Science of the Total Environment, 2018,625:1074-1087.
[8]
沈 劲,何 灵,程 鹏,等.珠三角北部背景站臭氧浓度变化特征 [J]. 生态环境学报, 2019,28(10):2006-2011. Shen J, He L, Cheng P, et al. Characteristics of ozone concentration variation in the northern background site of the Pearl River Delta [J]. Ecology and Environmental Sciences, 2019,28(10):2006-2011.
[9]
广东省生态环境厅.2020广东省生态环境状况公报 [Z]. 广州:广东省生态环境厅, 2021. Guangdong Provincial Department of ecology and environment. 2020Report on the state of Guangdong provincial ecology and environment [Z]. Guangzhou: Guangdong Provincial Department of ecology and environment, 2021.
[10]
沈 劲,杨土士,晏平仲,等.广东省臭氧污染特征及其成因分析 [J]. 环境科学与技术, 2020,43(12):90-95. Shen J, Yang T S, Yan P Z, et al. Characteristics and causes of ozone pollution in Guangdong Province [J]. Environmental Science & Technology, 2020,43(12):90-95.
[11]
邓玉娇,向昆仑,洪莹莹,等.广东省生态气象监测公报 [Z]. 广州:广东省气象局, 2021. Deng Y J, Xiang K L, Hong Y Y, et al. Guangdong Eco-meteorology monitoring bulletin [Z]. Guangzhou: Guangdong Meteorological Service, 2021.
王红丽.上海市光化学污染期间挥发性有机物的组成特征及其对臭氧生成的影响研究 [J]. 环境科学学报, 2015,35(6):1603-1611. Wang H L. Characterization of volatile organic compounds (VOCs) and the impact on ozone formation during the photochemical smog episode in Shanghai, China [J]. Acta Scientiae Circumstantiae, 2015, 35(6):1603-1611.
[14]
陆克定,张远航,苏 杭,等.珠江三角洲夏季臭氧区域污染及其控制因素分析 [J]. 中国科学:化学, 2010,40(4):407-420. Lu K D, Zhang Y H, Su H, et al. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time [J]. Scientia sinica Chimica, 2010,40(4):407-420.
[15]
沈 劲,陈多宏,汪 宇,等.基于情景分析的珠三角臭氧与前体物排放关系研究 [J]. 生态环境学报, 2018,27(10):1925-1932. Shen J, Chen D H, Wang Y, et al. Study on the relationship between ozone and precursors emission in the Pearl River Delta based on scenario analysis [J]. Ecology and Environmental Sciences, 2018, 27(10):1925-1932.
[16]
邓思欣,刘永林,司徒淑聘,等.珠三角产业重镇大气VOCs污染特征及来源解析 [J]. 中国环境科学, 2021,41(7):2993-3003. Deng S X, Liu Y L, Situ S P, et al. Characteristics and source apportionment of volatile organic compounds in an industrial town of Pearl River Delta [J]. China Environmental Science, 2021,41(7):2993-3003.
[17]
Shen J, Zhang Y H, Wang X S, et al. An ozone episode over the Pearl River Delta in October 2008 [J]. Atmospheric Environment, 2015, 122:852-863.
[18]
Yin C Q, Deng X J, Zou Y, et al. Trend analysis of surface ozone at suburban Guangzhou, China [J]. Science of the Total Environment, 2019,695:133880.
[19]
洪莹莹,翁佳烽,谭浩波,等.珠江三角洲秋季典型O3污染的气象条件及贡献量化 [J]. 中国环境科学, 2021,41(1):1-10.. Hong Y Y, Weng J F, Tan H B, et al. 2021. Meteorological conditions and contribution quantification of typical ozone pollution during autumn in Pearl River Delta [J]. China Environmental Science, 2021,41(1):1-10.
[20]
Solomon P, Cowling E, Hidy G, et al. Comparison of scientificfindings from major ozone field studies in North America and Europe [J]. Atmospheric Environment, 2000,34:1885–1920.
[21]
Colette A, Andersson C, Baklanov A, et al. Is the ozone climate penalty robust in Europe? [J]. Environmental Research Letters, 2015,10:084015.
[22]
Ejimofor C S, Okoro E C, Sivla W T. Effects of elevated humidity on stratospheric ozone content in the tropics [J]. International Journal of Physical Sciences, 2021,15(4):182-193.
[23]
邓雪娇,周秀骥,吴 兑,等.珠江三角洲大气气溶胶对地面臭氧变化的影响 [J]. 中国科学:地球科学, 2011,41(1):93-102. Deng X J, Zhou X J, Wu D, et al. Effect of atmospheric aerosol on surface ozone variation over the Pearl River Delta region [J]. Scientia Sinica Terrae, 2011,41(1):93-102.
[24]
齐 冰,朱彧文,杜荣光,等.杭州市近地面大气臭氧浓度变化特征分析 [J]. 中国环境科学, 2017,37(2):443-451. Qi Bing, Niu Y W, Du R G, et al. Characteristics of surface ozone concentration in urban site of Hangzhou [J]. China Environmental Science, 2017,37(2):443-451.
[25]
黄 俊,廖碧婷,吴 兑,等.广州近地面臭氧浓度特征及气象影响分析 [J]. 环境科学学报, 2018,38(1):23-31. Huang J, Liao B T, Wu D, et al. Guangzhou ground level ozone concentration characteristics and associated meteorological factors [J]. Acta Scientiae Circumstantiae, 2018,38(1):23-31.
[26]
刘 建,吴 兑,范绍佳,等.前体物与气象因子对珠江三角洲臭氧污染的影响 [J]. 中国环境科学, 2017,37(3):813-820. Liu J, Wu D, Fan S J, et al. Impacts of precursors and meteorological factors on ozone pollution in Pearl River Delta [J]. China Environmental Science, 2017,37(3):813-820.
[27]
许建明,常炉予,马井会,等.上海秋冬季PM2.5污染天气形势的客观分型研究 [J]. 环境科学学报, 2016,36(12):4303-4314. Xu J M, Chang L Y, Ma J H, et al. Objective synoptic weather classification on PM2.5 pollution autumn and winter seasons in Shanghai [J]. Acta Scientiae Circumstantiae, 2016,36(12):4303-4314.
[28]
Wolff G T, Lioy P J. Development of an ozone river associated with synoptic scale episodes in the eastern United States [J]. Environmental Science and Technology, 1980,14(10):1257-1260.
[29]
Heidorn K C, Yap D. A synoptic climatology for surface ozone concentrations in southern Ontario, 1976~1981 [J]. Atmospheric Environment, 1986,20:695-703
[30]
Zhang Y, Mao H, Ding A, et al. Impact of synoptic weather patterns on spatio-temporal variation in surface O3 levels in Hong Kong during 1999~2011 [J]. Atmospheric Environment, 2013,73:41-50.
[31]
Wang N, Ling Z H, Deng X J, et al. Source contributions to PM2.5 under unfavorable weather conditions in Guangzhou city, China [J]. Advances in atmospheric sciences, 2018,35:1145-1159.
[32]
尹晓梅,朱 彬,熊亚军,等.2007~2016年北京天气分型与霾日的关联 [J]. 中国环境科学, 2020,40(1):123-134. Yin X M, Zhu B, Xiong Y J, et al. Objective analysis on circulation types and its links to haze days over Beijing during 2007~2016 [J]. China Environmental Science, 2020,40(1):123-134.
[33]
唐贵谦,李 昕,王效科,等.天气型对北京地区近地面臭氧的影响 [J]. 环境科学, 2010,31(3):573-578. Tang G Q, Li X, Wang X K, et al. Effects of synoptic type on surface ozone pollution in Beijing [J]. Environmental Science, 2010,31(3):573-578.
[34]
王 宏,林长城,陈晓秋,等.天气条件对福州近地层臭氧分布的影响 [J]. 生态环境学报, 2011,20(8/9):1320-1325. Wang H, Lin C C, Chen X Q, et al. Effects of weather condition on surface ozone distribution in Fuzhou [J]. 2011,20(8/9):1320-1325.
[35]
常炉予,许建明,瞿元昊,等.上海市臭氧污染的大气环流客观分型研究 [J]. 环境科学学报, 2019,39(1):169-179. Chang L Y, Xu J M, Qu Y H, et al. Study on objective synoptic classification on ozone pollution in Shanghai [J]. Acta Scientiae Circumstantiae, 2019,39(1):169-179.
[36]
任万辉.沈阳地区臭氧污染日时空变化特征及天气分型研究 [J]. 中国环境监测, 2021,37(4):75-82. Ren W H. Study on spatial and temporal variation characteristics of ozone pollution and weather classification in Shenyang [J]. Environmental Monitoring in China, 2021,37(4):75-82.
[37]
岳海燕,顾桃峰,王春林,等.台风“妮妲”过程对广州臭氧浓度的影响分析 [J]. 环境科学学报, 2018,38(12):4565-4572. Yue H Y, Gu T F, Wang C L, et al. Influence of typhoon Nida process on ozone concentration in Guangzhou [J]. Acta Scientiae Circumstantiae, 2018,38(12):4565-4572.
[38]
Deng T, Wang T J, Wang S Q, et al. Impact of typhoon periphery on high ozone and high aerosol pollution in the Pearl River Delta region [J]. Science of the Total Environment, 2019,668:617-630.
[39]
高晓荣,邓雪娇,谭浩波,等.广东四大区域污染过程特征与影响天气型分析 [J]. 环境科学学报, 2018,38(5):1708-1716. Gao X R, Deng X J, Tan H B, et al. Characteristics and analysis on regional pollution process and circulation weather types over Guangdong Province [J]. Acta Scientiae Circumstantiae, 2018,38(5):1708-1716.
[40]
Jiang Y C, Zhao T L, Liu J, et al. Why does surface ozone peak before a typhoon landing in Southeast China? [J]. Atmospheric Chemistry & Physics, 2015,15:13331-13338.
[41]
Wang N, Huang X, Xu J W, et al. Typhoon-boosted biogenic emission aggravates cross-regional ozone pollution in China [J]. Science Advances, 2022,8:eabl6166.
[42]
范绍佳,王安宇,樊 琦,等.珠江三角洲大气边界层特征及其概念模型 [J]. 中国环境科学, 2006,26(Suppl.):4-6. Fan S J, Wang A Y, Fan Q, et al. Atmospheric boundary layer features of Pearl River Delta and irs conception model [J]. China Environmental Science, 2006,26(Suppl.):4-6.
[43]
Wang H L, Wu K, Liu Y M, et al. Role of heat wave-induced biogenic VOC enhancements in persistent ozone episodes formation in Pearl River Delta [J]. Journal of Geophysical Research: Atmospheres, 2021, 126(12):1-19.
[44]
HJ 633-2012 环境空气质量指数(AQI)技术规定(试行) [S]. HJ 633-2012 Technical regulation on ambient air quality index (on trial) [S].
[45]
Philipp A, Bartholy J, Beck C, et al. Cost733 cat-A database of weather and circulation type classifications [J]. Physics and Chemistry of the Earth, 2010,35:360-373.
[46]
Begum B A, Kim E, Jeong C H, et al. Evaluation of the potential source contribution function using the 2002 Quebee forest fire episode [J]. Atmospheric Environment, 2005,39(20):3719-3724.
[47]
Polissar A V, Hopke P K, Paatero P, et al. The aerosol at Barrow, Alaska: long-term trends and source locations [J]. Atmospheric Environment, 1999,33(16):2441-2458.
[48]
Ding J, van der A R J, Eskes H J, et al. NOx emissions reduction and rebound in China due to the COVID-19crisis [J]. Geophysical Research Letters, 2020,47:e2020GL089912.
[49]
广东生态环境.广东省启动2020年蓝天保卫战百日冲刺行动 [Z]. https://www.mee.gov.cn/ywdt/dfnews/202010/t20201008_801985.shtml, 2020. Guangdong Ecological Environment. Guangdong province has launched a 100-day sprint for Blue Sky Protection Campaign in 2020 [Z]. https://www.mee.gov.cn/ywdt/dfnews/202010/t20201008_801985.shtml, 2020.
[50]
陈创买,郑德娟,赵仲辉.广东干湿气候的特征 [J]. 热带气象学报, 1997,13(3):193-200. Chen C M, Zheng D J, Zhao Z H. Features of climate of dryness and wetness in Guangdong [J]. Journal of Tropical Meteorology, 1997, 13(3):193-200.
[51]
张远航,郑君瑜,陈长虹,等.中国大气臭氧污染防治蓝皮书(2020年) [Z]. 北京:中国环境科学学会臭氧污染控制专业委员会, 2020. Zhang Y H, Zheng J Y, Chen C H, et al. China blue book ofatmospheric ozone pollution prevention and control (2020) [Z]. Beijing: Professional Committee of Ozone Pollution Control, Chinese Society of Environmental Sciences, 2020.
[52]
翁佳烽,梁晓媛,谭浩波,等.基于K-means聚类分析法的肇庆市干季PM2.5污染天气分型研究 [J]. 环境科学学报, 2020,40(2):15-29. Weng J F, Liang X Y, Tan H B, et al. Objective synoptic classification on PM2.5 pollution during dry season based on K-means in Zhaoqing [J]. Acta Scientiae Circumstantiae, 2020,40(2):373-387.